A fructose receptor gene influences development and feed intake in Helicoverpa armigera.

Insect Sci

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

Published: August 2022

Gustatory receptors (GRs) are critical for multiple life activities of insects. Owing to the rapid development of genome and transcriptome sequencing, numerous insect GRs have been identified. However, the expression patterns and functions of these receptors are poorly understood. In this study, we analyzed the expression pattern of GRs in Helicoverpa armigera and found that the fructose receptor HarmGR9 was highly expressed in the foregut and abdomen. The function of HarmGR9 was identified using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system. Knockout of the HarmGR9 gene shortened the developmental period of the larval stages and increased food consumption in both larvae and adults. This study revealed the tissue distribution of sugar-sense-related receptors in H. armigera and thereby expanded the understanding of insect feeding regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1744-7917.12984DOI Listing

Publication Analysis

Top Keywords

fructose receptor
8
helicoverpa armigera
8
receptor gene
4
gene influences
4
influences development
4
development feed
4
feed intake
4
intake helicoverpa
4
armigera gustatory
4
gustatory receptors
4

Similar Publications

Ferulic acid (FA) is a phenolic compound obtained naturally and is a versatile antioxidant identified for its potential in managing hypertension. However, its application is constrained due to its classification as a BCS Class IV moiety. To address this, we concentrated on improving its solubility and permeability by developing nanostructured lipid carriers (NLCs) of FA using emulsification probe sonication technique.

View Article and Find Full Text PDF

Glume-opening of thermosensitive genic male sterile (TGMS) rice ( L.) lines after anthesis is a serious problem that significantly reduces the yield and quality of hybrid seeds. However, the molecular mechanisms regulating the opening and closing of rice glumes remain largely unclear.

View Article and Find Full Text PDF

Metformin reverts aortic calcifications and elastin loss induced by an experimental metabolic syndrome.

Endocr Connect

January 2025

A McCarthy, LIOMM, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata, 1900, Argentina.

Metabolic syndrome (MetS) is associated with osteogenic transdifferentiation of vascular smooth muscle cells (VSMC) and accumulation of arterial calcifications (AC). Metformin (MET) inhibits this transdifferentiation in vitro. Here, we evaluate the in vivo efficacy of oral MET to reduce AC in a model of MetS.

View Article and Find Full Text PDF

Djulis ( Koidz.) possesses various biological activities, including anti-oxidant, anti-hyperglycemic, anti-aging and hepatoprotective properties. Although djulis husk is typically considered agricultural waste, there is value in exploring ways to utilize it effectively.

View Article and Find Full Text PDF

PPARα-ERRα crosstalk mitigates metabolic dysfunction-associated steatotic liver disease progression.

Metabolism

December 2024

Translational Nuclear Receptor Research, UGent Department of Biomolecular Medicine, VIB Center for Medical Biotechnology, Ghent, Belgium. Electronic address:

Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent liver disease worldwide, continues to rise. More effective therapeutic strategies are urgently needed. We investigated how targeting two key nuclear receptors involved in hepatic energy metabolism, peroxisome proliferator-activated receptor alpha (PPARα) and estrogen-related receptor alpha (ERRα), ameliorates MASLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!