Interfacial evaporation using porous hydrogels has demonstrated highly effective solar evaporation performance under natural sunlight to ensure an affordable clean water supply. However, it remains challenging to realize scalable and ready-to-use hydrogel materials with durable mechanical properties. Here, self-assembled templating (SAT) is developed as a simple yet effective method to fabricate large-scale elastic hydrogel evaporators with excellent desalination performance. The highly interconnected porous structure of the hydrogels with low tortuosity and tunable pore size enables high level of tunability on the water transport rate. With superior elasticity, the porous hydrogels are easy to process with a rapid shape recovery after being rolled, folded, and twisted over hundred times, and exhibit highly effective and stable evaporation with an evaporation rate of ≈2.8 kg m h and ≈90 % solar-to-vapor efficiency. It is anticipated that this SAT strategy, without the typical need for freeze-drying, will accelerate the industrialization of hydrogel solar evaporators for practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202114074 | DOI Listing |
Anal Chim Acta
January 2025
College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China. Electronic address:
Background: Because arsenate (As(V)) is a highly toxic pollutant, timely on-site monitoring of its concentration is crucial for mitigating potential environmental and health hazards. Traditional on-site detection methods for As(V) often face limitations of long response time and low sensitivity. Nanozymes are nanomaterials that exhibit enzyme-like catalytic activity.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette 47907-2050, Indiana, United States.
Granular hydrogels are injectable and inherently porous biomaterials assembled through the packing of microparticles. These particles typically have a symmetric and spherical shape. However, recent studies have shown that asymmetric particles with high aspect ratios, such as fibers and rods, can significantly improve the mechanics, structure, and cell-guidance ability of granular hydrogels.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
aDepartment of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China. Electronic address:
Tissue engineering utilizing hydrogel scaffolds in combination with exogenous stem cells holds significant potential for promoting wound regeneration. However, the microenvironment provided by existing skin tissue engineering scaffold materials is often inadequate. Herein, we demonstrate an enzyme-crosslinked hyaluronic acid hydrogel to provide a growth microenvironment for exogenous bone marrow mesenchymal stem cells and promote acute wound healing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
Synovial exudation, creeping, and lubrication failure in natural cartilage under a long-term normal loading can be counteracted by a tribo-rehydration (sliding-induced rehydration) phenomenon. Hydrogels, as porous materials, can also restore interfacial lubrication and overcome creep through this strategy. At appropriate sliding velocities, water molecules at the interface contact inlet are driven by hydrodynamic pressures into the porous network to resist creep extrusion.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain.
In three-dimensional (3D)-printed tissue models, sensitive, noninvasive techniques are required to detect changes in hydrogel structure caused by cellular remodeling. We demonstrate herein that circular dichroism (CD) spectroscopy provides a reliable method for detecting hydrogel structural variations. We probe directly the plasmonic optical activity of chiral gold nanorods (c-AuNRs) embedded within the hydrogel matrix, in response to variations in the local environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!