A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pivotal Evaluation of an Artificial Intelligence System for Autonomous Detection of Referrable and Vision-Threatening Diabetic Retinopathy. | LitMetric

Importance: Diabetic retinopathy (DR) is a leading cause of blindness in adults worldwide. Early detection and intervention can prevent blindness; however, many patients do not receive their recommended annual diabetic eye examinations, primarily owing to limited access.

Objective: To evaluate the safety and accuracy of an artificial intelligence (AI) system (the EyeArt Automated DR Detection System, version 2.1.0) in detecting both more-than-mild diabetic retinopathy (mtmDR) and vision-threatening diabetic retinopathy (vtDR).

Design, Setting, And Participants: A prospective multicenter cross-sectional diagnostic study was preregistered (NCT03112005) and conducted from April 17, 2017, to May 30, 2018. A total of 942 individuals aged 18 years or older who had diabetes gave consent to participate at 15 primary care and eye care facilities. Data analysis was performed from February 14 to July 10, 2019.

Interventions: Retinal imaging for the autonomous AI system and Early Treatment Diabetic Retinopathy Study (ETDRS) reference standard determination.

Main Outcomes And Measures: Primary outcome measures included the sensitivity and specificity of the AI system in identifying participants' eyes with mtmDR and/or vtDR by 2-field undilated fundus photography vs a rigorous clinical reference standard comprising reading center grading of 4 wide-field dilated images using the ETDRS severity scale. Secondary outcome measures included the evaluation of imageability, dilated-if-needed analysis, enrichment correction analysis, worst-case imputation, and safety outcomes.

Results: Of 942 consenting individuals, 893 patients (1786 eyes) met the inclusion criteria and completed the study protocol. The population included 449 men (50.3%). Mean (SD) participant age was 53.9 (15.2) years (median, 56; range, 18-88 years), 655 were White (73.3%), and 206 had type 1 diabetes (23.1%). Sensitivity and specificity of the AI system were high in detecting mtmDR (sensitivity: 95.5%; 95% CI, 92.4%-98.5% and specificity: 85.0%; 95% CI, 82.6%-87.4%) and vtDR (sensitivity: 95.1%; 95% CI, 90.1%-100% and specificity: 89.0%; 95% CI, 87.0%-91.1%) without dilation. Imageability was high without dilation, with the AI system able to grade 87.4% (95% CI, 85.2%-89.6%) of the eyes with reading center grades. When eyes with ungradable results were dilated per the protocol, the imageability improved to 97.4% (95% CI, 96.4%-98.5%), with the sensitivity and specificity being similar. After correcting for enrichment, the mtmDR specificity increased to 87.8% (95% CI, 86.3%-89.5%) and the sensitivity remained similar; for vtDR, both sensitivity (97.0%; 95% CI, 91.2%-100%) and specificity (90.1%; 95% CI, 89.4%-91.5%) improved.

Conclusions And Relevance: This prospective multicenter cross-sectional diagnostic study noted safety and accuracy with use of the EyeArt Automated DR Detection System in detecting both mtmDR and, for the first time, vtDR, without physician assistance. These findings suggest that improved access to accurate, reliable diabetic eye examinations may increase adherence to recommended annual screenings and allow for accelerated referral of patients identified as having vtDR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8593763PMC
http://dx.doi.org/10.1001/jamanetworkopen.2021.34254DOI Listing

Publication Analysis

Top Keywords

diabetic retinopathy
20
sensitivity specificity
12
95%
9
artificial intelligence
8
system
8
intelligence system
8
vision-threatening diabetic
8
recommended annual
8
diabetic eye
8
eye examinations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!