A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular dynamics simulation studies on binding of activator and inhibitor to Munc13-1 C1 in the presence of membrane. | LitMetric

Molecular dynamics simulation studies on binding of activator and inhibitor to Munc13-1 C1 in the presence of membrane.

J Biomol Struct Dyn

Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.

Published: December 2022

Munc13-1 is a presynaptic active zone protein that plays a critical role in priming the synaptic vesicle and releasing neurotransmitters in the brain. Munc13-1 acts as a scaffold and is activated when diacylglycerol (DAG)/phorbol ester binds to its C1 domain in the plasma membrane. Our previous studies showed that bryostatin 1 activated the Munc13-1, but resveratrol inhibited the phorbol ester-induced Munc13-1 activity. To gain structural insights into the binding of the ligand into Munc13-1 C1 in the membrane, we conducted 1.0 μs molecular dynamics (MD) simulation on Munc13-1 C1-ligand-lipid ternary system using phorbol 13-acetate, bryostatin 1 and resveratrol as ligands. Munc13-1 C1 shows higher conformational stability and less mobility along membrane with phorbol 13-acetate and bryostatin 1 than with resveratrol. Bryostatin 1 and phorbol ester remained in the protein active site, but resveratrol moved out of Munc13-1 C1 during the MD simulation. While bryostatin 1-bound Munc13-1 C1 showed two different positioning in the membrane, phorbol 13-acetate and resveratrol-bound Munc13-1 C1 only showed one positioning. Phorbol 13-acetate formed hydrogen bond with Ala-574 and Gly-589. Bryostatin 1 had more hydrogen bonds with Trp-588 and Arg-592 than with other residues. Resveratrol formed hydrogen bond with Ile-590. This study suggests that different ligands control Munc13-1 C1's mobility and positioning in the membrane differently. Ligand also has a critical role in the interaction between Munc13-1 C1 and lipid membrane. Our results provide structural basis of the pharmacological activity of the ligands and highlight the importance of membrane in Munc13-1 activity.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482821PMC
http://dx.doi.org/10.1080/07391102.2021.2001375DOI Listing

Publication Analysis

Top Keywords

phorbol 13-acetate
16
munc13-1
14
molecular dynamics
8
dynamics simulation
8
membrane
8
membrane munc13-1
8
critical role
8
13-acetate bryostatin
8
bryostatin resveratrol
8
membrane phorbol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!