Materials that exhibit zero thermal expansion have numerous applications, ranging from everyday ceramic hobs to telescope mirrors to devices in optics and micromechanics. These materials include glass ceramics containing crystal phases with negative thermal expansion in at least one crystallographic direction, such as BaSrZnMgSiO solid solutions. However, the volume increase associated with the martensitic phase transformation in these crystals often hinders their use as zero thermal expansion materials at operating temperatures near the transition temperature . Here, an approach to rapidly predict of such materials as a function of chemical composition based on a combination of density functional theory simulations and experiments has been developed and applied to BaSrZnMgSiO. Its central element is the modeling of free energy as a function of temperature and chemical composition using a composition-dependent Debye model augmented by an empirical correction, which incorporates the effects of anharmonic lattice vibrations. This approach provides predictions with an estimated uncertainty of about ±100 K, which is similar to the accuracy of computationally much more demanding simulations of polymorphous phase transitions. In addition, this approach allows computationally efficient determination of the chemical compositions at which the BaSrZnMgSiO phase with the desired thermal properties will be formed during synthesis, facilitating the targeted design of zero thermal expansion materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp03862aDOI Listing

Publication Analysis

Top Keywords

thermal expansion
20
negative thermal
8
expansion materials
8
chemical composition
8
thermal
6
expansion
5
materials
5
phase
4
phase stability
4
stability determination
4

Similar Publications

Expansion counteraction effect assisted vanadate with rich oxygen vacancies as a high cycling stability cathode for aqueous zinc-ion batteries.

Phys Chem Chem Phys

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering and School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In this study, a novel tunnel structure vanadate NaVO (NaVO) cathode for aqueous zinc ion batteries (AZIBs) is facilely fabricated by thermal decomposition of polyoxovanadate containing NH ions. The NaVO cathode is characterized by abundant oxygen vacancies and nanometer dimensions. These attributes can offer extra reaction sites and suppress structural collapse during circulation.

View Article and Find Full Text PDF

The current demand for highly sensitive, optical sensors in biodiagnostics has prompted the development of ultrathin metal coatings on a range of substrates. Given the potential attenuation of the signal from a plasmonic sensor for the detection of fluorescent molecules when an adhesion layer between the substrate and coating is employed, this study examines the impact of various factors on the adhesion strength between gold coatings and substrates comprising glass and cyclo-olefin-polymer (COP). The objective is to identify potential configurations for high adhesion strength, thereby eliminating the need for an adhesion layer in the fabrication of optical sensors with gold coatings for diagnostic applications or to utilize a minimal adhesion layer thickness.

View Article and Find Full Text PDF

Multi-objective design of multi-material truss lattices utilizing graph neural networks.

Sci Rep

January 2025

Advanced Manufacturing Lab, ETH Zürich, Leonhardstrasse 21, 8092, Zurich, Switzerland.

The rapid advancements in additive manufacturing (AM) across different scales and material classes have enabled the creation of architected materials with highly tailored properties. Beyond geometric flexibility, multi-material AM further expands design possibilities by combining materials with distinct characteristics. While machine learning has recently shown great potential for the fast inverse design of lattice structures, its application has largely been limited to single-material systems.

View Article and Find Full Text PDF

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

Effects of Printing Orientation on the Tensile, Thermophysical, Smoke Density, and Toxicity Properties of Ultem 9085.

Polymers (Basel)

January 2025

Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, P. Valdena 3, LV-1048 Riga, Latvia.

Despite the impressive properties of additively manufactured products, their inherent anisotropy is a crucial challenge for polymeric parts made via fused filament fabrication (FFF). This study compared the tensile, thermophysical, smoke density, and toxicity characteristics of Ultem 9085 (a blend of polyetherimide and polycarbonate) for samples printed in various orientations (X, Y, and Z). The results revealed that mechanical properties, such as elastic modulus and tensile strength, significantly differed from the Z printing orientation, particularly in the X and Y printing layer orientations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!