How populations of aquatic fauna persist in extreme desert environments is an enigma. Individuals often breed and disperse during favorable conditions. Theory predicts that adaptive capacity should be low in small populations, such as in desert fishes. We integrated satellite-derived surface water data and population genomic diversity from 20,294 single-nucleotide polymorphisms across 344 individuals to understand metapopulation persistence of the desert rainbowfish (Melanotaenia splendida tatei) in central Australia. Desert rainbowfish showed very small effective population sizes, especially at peripheral populations, and low connectivity between river catchments. Yet, there was no evidence of population-level inbreeding and a signal of possible adaptive divergence associated with aridity was detected. Candidate genes for local adaptation included functions related to environmental cues and stressful conditions. Eco-evolutionary modeling showed that positive selection in refugial subpopulations combined with connectivity during flood periods can enable retention of adaptive diversity. Our study suggests that adaptive variation can be maintained in small populations and integrate with neutral metapopulation processes to allow persistence in the desert.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.14399DOI Listing

Publication Analysis

Top Keywords

populations desert
8
small populations
8
persistence desert
8
desert rainbowfish
8
desert
6
populations
5
fish water
4
water genomic
4
genomic insights
4
insights persistence
4

Similar Publications

Mathematical assessment of the role of temperature on desert locust population dynamics.

PLoS One

January 2025

School of Mathematics and Statistics, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America.

This study presents a novel non-autonomous mathematical model to explore the intricate relationship between temperature and desert locust population dynamics, considering the influence of both solitarious and gregarious phases across all life stages. The model incorporates temperature-dependent parameters for key biological processes, including egg development, hopper growth, adult maturation, and reproduction. Theoretical analysis reveals the model's capacity for complex dynamical behaviors, such as multiple stable states and backward bifurcations, suggesting the potential for sudden and unpredictable population shifts.

View Article and Find Full Text PDF

Tylosema esculentum (marama bean), an underutilized orphan legume native to southern Africa, holds significant potential for domestication as a rescue crop to enhance local food security. Well-adapted to harsh desert environments, it offers valuable insights into plant resilience to extreme drought and high temperatures. In this study, k-mer analysis indicated marama as an ancient allotetraploid legume.

View Article and Find Full Text PDF

Understanding rangeland desertification through pastoralist perspectives using a grounded theory approach.

Sci Rep

January 2025

Researcher of Rural Development and Social Issues in the Field of Natural Resources and Agriculture, Gorgan, Iran.

Rangeland desertification risk has significantly increased due to the fragility of these ecosystems and the severity of degradation caused by climate instability and human activities over the last decade. This research focuses on identifying indicators of rangeland desertification risk using a qualitative grounded theory approach based on the perspectives of pastoralists in Kolijah and Qolaq-Borte, Golestan Province, Iran. The study population comprised regional pastoralists, with 15 experts selected through snowball sampling.

View Article and Find Full Text PDF

The fall armyworm (FAW), an important migratory pest native to the Americas, was first detected in a nonnative region (West Africa) in 2016. In the following years, it quickly spread to multiple regions worldwide. FAW exhibits long-distance seasonal migration in both the Americas and Asia, primarily to take advantage of suitable seasonal habitats as they appear along the migratory pathways.

View Article and Find Full Text PDF

Environmental gradients shape genetic variation in the desert moss, Syntrichia caninervis Mitt. (Pottiaceae).

Sci Rep

January 2025

Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr, Los Angeles, CA, 90032, USA.

The moss Syntrichia caninervis Mitt. is distributed throughout drylands globally, and often anchors ecologically significant communities known as biological soil crusts (biocrusts). The species occupies a variety of dryland habitats with varying levels of drought and temperature stress, suggesting the potential for ecological specialization within S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!