Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
For oil sand reservoirs, the steam-assisted gravity drainage (SAGD) technique is one of the most efficient thermal recovery technologies. However, the high oil viscosity and the severe heat loss seriously affect the production effect of SAGD in developing thin oil sand reservoirs by the traditional SAGD technology. Therefore, it is essential to improve the SAGD technology to enhance the recovery of the thin oil sand reservoir. In this paper, SAGD with a combination of vertical and horizontal well (VH-SAGD) technology was adopted, and the influence of different well spacings (horizontal distance between vertical steam injection wells and horizontal production wells) on the development of steam chambers was investigated. By the similarity criterion, the experimental parameters were obtained. After that, an improved 2D visualization physical model was designed with 9 × 9 high-precision thermocouples installed inside the device to monitor the real-time temperature. This experimental physical model can not only accurately capture the temperature distribution but also display the continuous change process of the chamber inside the model by the visible window. Finally, different well spacing cases (10, 15, and 20 cm) were tested to observe the development of the steam chamber and analyze the production data. Both the temperature distribution and visual window showed that the steam chamber has four obvious stages, and reasonable well spacing can promote the development of the steam chamber. When the well spacing is relatively small, the unswept area of the cold oil on both sides is large, and the area of the steam chamber overlaps more. When the well spacing is relatively moderate, the steam chamber is the most complete and the recovery factor is the highest. When the well spacing is relatively large, although the unswept area of the cold oil on both sides is small, the middle cold oil area is larger than the previous two groups. Therefore, the best well spacing for oil sand reservoirs of about 15 m thickness is 15-20 m, where the VH-SAGD method has a better displacement effect and higher oil recovery. The experimental conclusions can provide theoretical support for the production of thin oil sand reservoirs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582263 | PMC |
http://dx.doi.org/10.1021/acsomega.1c04737 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!