Inhibiting the penetration of water molecules and aggressive ions is of considerable significance in improving the durability of reinforced concrete structures. In this work, molecular dynamics(MD) is employed to design a high-efficiency organic fluid transport inhibitor. MD results indicate that there is mutual complementation between the hydrophilic and hydrophobic functional groups in the chemical structure of this polymer. One end with the carboxyl groups can stably adsorb on the surface of the cementitious matrix due to the strong attraction from calcium ions. Simultaneously, the rest of the hydrophobic part of the polymer can stand up to maximize the repelling effect on the penetration of fluids. Furthermore, for high cost-effectiveness performance, the minimum number and the optimum position of the carboxyl groups of one polymer inhibitor have been determined. As the molecular structure contains two hydrophilic groups, only if located at the same end, the polymer chain can display the most preferable adsorption morphology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582062PMC
http://dx.doi.org/10.1021/acsomega.1c04100DOI Listing

Publication Analysis

Top Keywords

molecular structure
8
fluid transport
8
transport inhibitor
8
reinforced concrete
8
concrete structures
8
carboxyl groups
8
optimal design
4
design molecular
4
structure fluid
4
inhibitor applied
4

Similar Publications

The P2YR is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2YR antagonists and the crystallographic overlap study between PPTN and compound , a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2YR antagonists. The optimal compound (methyl 3-(1-benzo[]imidazol-2-yl)-5-(2-(-tolyl) acetamido)benzoate, IC = 0.

View Article and Find Full Text PDF

Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.

View Article and Find Full Text PDF

Thiophene and pyrrole units are extensively utilized in light-responsive materials and have significantly advanced the field of organic photovoltaics (OPV). This progress has inspired our exploration of photosensitizers (PS) for photodynamic therapy (PDT). Currently, traditional PS face limitations in clinical application, including a restricted variety and narrow applicability.

View Article and Find Full Text PDF

Flotillins in membrane trafficking and physiopathology.

Biol Cell

January 2025

CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), BIOLuM, University of Montpellier, CNRS UMR 5237, Montpellier, France.

Flotillin 1 and 2 are highly conserved and homologous members of the stomatin, prohibitin, flotillin, HflK/C (SPFH) family. These ubiquitous proteins assemble into hetero-oligomers at the cytoplasmic membrane in sphingolipid-enriched domains. Flotillins play crucial roles in various cellular processes, likely by concentrating sphingosine.

View Article and Find Full Text PDF

White Matter Injury in Central Nervous System Disorders.

Neuropsychiatr Dis Treat

January 2025

Department of Rehabilitation Medicine, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People's Republic of China.

As the aging process accelerates and living conditions improve, central nervous system (CNS) diseases have become a major public health problem. Diseases of the CNS cause not only gray matter damage, which is primarily characterized by the loss of neurons, but also white matter damage. However, most previous studies have focused on grey matter injury (GMI), with fewer studies on white matter injury (WMI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!