Cytotopic (Cyto-) IL-15 as a New Immunotherapy for Prostate Cancer: Recombinant Production in and Purification.

Front Mol Biosci

Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom.

Published: October 2021

Interleukin-15 (IL-15) is a cytokine previously suggested as a potential immunotherapy for cancer treatment. IL-15 can effectively reduce tumor growth in many preclinical tumor models including prostate cancer. This is due to its ability to expand and activate immune cells, such as CD8 T cells and natural killer cells. To increase the potency of IL-15, we have engineered a protein variant that can be modified to localize and be retained in tissues where it is administered. However, the production of recombinant IL-15, the purity, and correct refolding of the final protein is not always ideal. In the current study, we aimed to optimize the methodology for production and purification of a modified recombinant human IL-15 and investigate the efficacy of the produced protein in the treatment of prostate tumors. Human IL-15 with its polypeptide sequence modified at the C-terminus to enable thiol conjugation with membrane localizing peptides, was produced in and purified using mild denaturing conditions (2M urea) from a washing step or from solubilization of inclusion bodies. The purified protein from the wash fraction was conjugated to a myristoylated peptide to form a membrane-localizing IL-15 (cyto-IL-15). The efficacy of cyto-IL-15 was investigated in subcutaneous TRAMP-C2 prostate tumors in mice and compared with cyto-IL-15 derived from protein purified from inclusion bodies (cyto-IL-15 Gen). When mild denaturing conditions were used for purification, the largest amount of IL-15 was collected from the wash fraction and a smaller amount from inclusion bodies. The protein from the wash fraction was mainly present as a monomer, whereas the one from inclusion bodies formed homodimers and higher complexes. After cytotopic modification, the purified IL-showed great efficacy in delaying prostate tumor growth (∼50%) and increased mice survival by ∼1.8-fold compared with vehicle. This study demonstrates an alternative, inexpensive and efficient method to produce and purify a modified version of IL-15 using mild denaturing conditions. This IL-15, when cytotopically modified, showed great efficacy as a monotherapy in prostate tumors in mice further highlighting the potential of IL-15 as a cancer immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8578882PMC
http://dx.doi.org/10.3389/fmolb.2021.755764DOI Listing

Publication Analysis

Top Keywords

inclusion bodies
16
il-15
12
prostate tumors
12
mild denaturing
12
denaturing conditions
12
wash fraction
12
prostate cancer
8
production purification
8
tumor growth
8
human il-15
8

Similar Publications

The production of disulfide-containing recombinant proteins often requires refolding of inclusion bodies before purification. A pre-refolding purification step is crucial for effective refolding because impurities in the inclusion bodies interfere with refolding and subsequent purification. This study presents a new pre-refolding procedure using a reversible S-cationization technique for protein solubilization and purification by reversed-phase high performance liquid chromatography.

View Article and Find Full Text PDF

Dectin-1 (CLEC7A), a C-type lectin-like receptor that recognizes β-1,3 glucans, has a key role in the innate immune system. While the lectin domain of mouse Dectin-1 has been solubilized and refolded from inclusion bodies in Escherichia coli, similar refolding of the human Dectin-1 lectin domain is hindered by the formation of misfolded multimers with aberrant intermolecular disulfide bonds. The aim of this study was to develop a method for the large-scale production of the human Dectin-1 lectin domain.

View Article and Find Full Text PDF

Detection of Tilapia parvovirus in farm-reared tilapia in India and its isolation using fish cell lines.

In Vitro Cell Dev Biol Anim

January 2025

Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, (Affiliated to Thiruvalluvar University), Melvisharam, Tamil Nadu, India.

Tilapia parvovirus (TiPV) is an emerging viral pathogen and responsible for severe economic loss in tilapia culture production. Lethargic, cutaneous haemorrhages; ocular lesions; discolouration of gill and cloudy eye and exophthalmia are common symptoms of TiPV. The TiPV-suspected tilapia fish were collected from grow-out ponds situated in different parts of Tamil Nadu, India, and screened for TiPV by PCR.

View Article and Find Full Text PDF

Unlabelled: Since the inception of transplantation, it has been crucial to ensure that organ or tissue donations are made with valid informed consent to avoid concerns about coercion or exploitation. This issue is particularly challenging when it comes to infants and younger children, insofar as they are unable to provide consent. Despite their vulnerability, infants' organs and tissues are considered valuable for biomedical purposes due to their size and unique properties.

View Article and Find Full Text PDF

Distinct subcellular localization of tau and alpha-synuclein in lewy body disease.

Acta Neuropathol Commun

January 2025

Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.

Lewy bodies and neurofibrillary tangles, composed of α-synuclein (α-syn) and tau, respectively, often are found together in the same brain and correlate with worsening cognition. Human postmortem studies show colocalization of α-syn and tau occurs in Lewy bodies, but with limited effort to quantify colocalization. In this study, postmortem middle temporal gyrus tissue from decedents (n = 9) without temporal lobe disease (control) or with Lewy body disease (LBD) was immunofluorescently labeled with antibodies to phosphorylated α-syn (p-α-syn), tau phosphorylated at Ser202/Thr205 (p-tau), or exposure of tau's phosphatase-activating domain (PAD-tau) as a marker of early tau aggregates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!