Mechanisms of WNT and bone morphogenetic protein (BMP) signaling crosstalk is in the focus of multiple biological studies, and it also has been discovered to play important roles in human mesenchymal stromal cells (MSC) that are of great interest for neocartilage engineering due to their high chondrogenic differentiation potential. However, MSC-derived chondrocytes undergo hypertrophic degeneration that impedes their clinical application for cartilage regeneration. In our previous study, we established that several microRNAs (miRs) are differentially expressed between articular chondrocytes (AC) - and MSC-derived neocartilage, with miR-181a being the most prominent candidate as key microRNA involved in the regulation of a balance between chondral and endochondral differentiation. The aim of this study was the identification of precise mRNA targets and signaling pathways regulated by miR-181a in MSC during chondrogenesis. MiR-181a was upregulated during chondrogenesis of MSC, along with an increase of the hypertrophic phenotype in resulting cartilaginous tissue. By analysis combined with miR reporter assay, the WNT signaling activator and BMP signaling repressor was suggested as a target of miR-181a. Further validation experiments confirmed that miR-181a targets mRNA in MSC. It was found that in human MSC miR-181a activated BMP signaling manifested by the accumulation of SOX9 protein and increased phosphorylation of SMAD1/5/9. These effects, together with the concomitant reduction of canonical WNT signaling induced by miR-181a mimic, were in accordance with the effects expected by the loss of , thus indicating the causative link between miR-181a and . Moreover, we observed that a tight correlation between miR-181a and miR-218 expression levels in healthy human cartilage tissue was disrupted in osteoarthritis (OA) highlighting the importance of the WNT-BMP signaling crosstalk for preventing OA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586458 | PMC |
http://dx.doi.org/10.3389/fcell.2021.747057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!