Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A massive amount of textual data now exists in digital repositories in the form of research articles, news articles, reviews, Wikipedia articles, and books, etc. Text clustering is a fundamental data mining technique to perform categorization, topic extraction, and information retrieval. Textual datasets, especially which contain a large number of documents are sparse and have high dimensionality. Hence, traditional clustering techniques such as K-means, Agglomerative clustering, and DBSCAN cannot perform well. In this paper, a clustering technique especially suitable to large text datasets is proposed that overcome these limitations. The proposed technique is based on word embeddings derived from a recent deep learning model named "Bidirectional Encoders Representations using Transformers". The proposed technique is named as WEClustering. The proposed technique deals with the problem of high dimensionality in an effective manner, hence, more accurate clusters are formed. The technique is validated on several datasets of varying sizes and its performance is compared with other widely used and state of the art clustering techniques. The experimental comparison shows that the proposed clustering technique gives a significant improvement over other techniques as measured by metrics such Purity and Adjusted Rand Index.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8421191 | PMC |
http://dx.doi.org/10.1007/s40747-021-00512-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!