The novel paradigm of Internet of Things (IoT) is gaining recognition in the numerous scenarios promoting the pervasive presence of smart things around us through its application in various areas of society, which includes transportation, healthcare, industries, and agriculture. One more such application is in the smart office to monitor the health of devices via machine learning (ML) that makes the equipment more efficient by allowing real-time monitoring of their health. It guarantees indoor comfort as per the user's satisfaction as it emphasizes on fault prediction in real-life devices. Early identification of various types of faults in IoT devices is the key requirement in smart offices. IoT devices are becoming ubiquitous and provide an assistant to supervise an office that is regulated by ML and data received from sensors is stored in cloud. A recommender system facilitates the selection of an appropriate solution for faults in IoT-enabled devices to mitigate faults. The architecture proposed in this paper is used to monitor each and every office appliance connected via IoT technology using ML technique, and recommender system is used to recommend solutions for fault patterns without much human intervention. The ultrasonic motion sensor is used to fetch the information of employee availability in cubicles and data is sent to the cloud through the WiFi module. ATmega8 is used to control electrical appliances in the office environment. The significance of this work is to forecast the faults in IoT appliances which will have an impact on life and reliability of IoT appliances. The main objective is to design a prototype of a smart office using IoT that can control and automate workplace devices and forecast whether the device needs repairing or replacing, thus reducing the overall burden on the employee and helping out in increasing physical as well as mental health of the person.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580680PMC
http://dx.doi.org/10.1155/2021/8106467DOI Listing

Publication Analysis

Top Keywords

fault prediction
8
iot
8
smart office
8
faults iot
8
iot devices
8
recommender system
8
iot appliances
8
office
6
devices
6
cloud-based fault
4

Similar Publications

Prediction of induction motor faults using machine learning.

Heliyon

January 2025

Electrical and Information Engineering Department, Covenant University, P.M.B 1023, Ota, 112212, Ogun State, Nigeria.

Unplanned downtime in industrial sectors presents significant challenges, impacting both production efficiency and profitability. To tackle this issue, companies are actively working towards optimizing their operations and reducing disruptions that hinder their ability to meet customer demands and financial goals. Predictive maintenance, utilizing advanced technologies like data analytics, machine learning, and IoT devices, offers real-time equipment data monitoring and analysis.

View Article and Find Full Text PDF

Induction motors are essential components in industry due to their efficiency and cost-effectiveness. This study presents an innovative methodology for automatic fault detection by analyzing images generated from the Fourier spectra of current signals using deep learning techniques. A new preprocessing technique incorporating a distinctive background to enhance spectral feature learning is proposed, enabling the detection of four types of faults: healthy motor coupled to a generator with a broken bar (HGB), broken rotor bar (BRB), race bearing fault (RBF), and bearing ball fault (BBF).

View Article and Find Full Text PDF

The construction of a predictive model that accurately reflects the spontaneous combustion temperature of coal in goaf is fundamental to monitoring and early warning systems for thermodynamic disasters, including coal spontaneous combustion and gas explosions. In this paper, on the basis of programming temperature experiment and industrial analysis, 381 data sets of 9 coal types are established, and feature selection was executed through the utilization of the Pearson correlation coefficient, ultimately identifying O, CO, CO, CH, CH, CH/CH, CH/CH, CH/CH, CO/CO, and CO/O as input indicators for the prediction model. The chosen indicator data were divided into training and testing sets in a 4:1 ratio, the Particle Swarm Optimization (PSO) methodology was applied to optimize the parameters of the XGBoost regressor, and a universal PSO-XGBoost prediction model is proposed.

View Article and Find Full Text PDF

Galloping behavior of insulated overhead transmission line based on aerodynamic analysis.

Sci Rep

January 2025

Key Laboratory of Smart Grid of Ministry of Education, School of Electrical and Information Engineering, Tianjin University, Tianjin, China.

The galloping of iced transmission line under extreme weather conditions, will lead to significant electrical faults and structural damage, and is becoming a serious issue that threatens the safe and stable operation of the power grid. In this paper, a simulation model of 10 kV insulated overhead transmission line is established based on finite element method, and the effects of various influencing factors on the galloping behavior and aerodynamic characteristics are investigated and analyzed. The results show that the aerodynamic stability of the iced lines is poorest, when the wind speed is between 7 and 15 m/s and the wind attack angle is around 50°.

View Article and Find Full Text PDF

Centrifugal compressors are widely used in the oil and natural gas industry for gas compression, reinjection, and transportation. Fault diagnosis and identification of centrifugal compressors are crucial. To promptly monitor abnormal changes in compressor data and trace the causes leading to these data anomalies, this paper proposes a security monitoring and root cause tracing method for compressor data anomalies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!