Skin patch created for covid-19 vaccine.

New Sci

Published: November 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571731PMC
http://dx.doi.org/10.1016/S0262-4079(21)01972-2DOI Listing

Publication Analysis

Top Keywords

skin patch
4
patch created
4
created covid-19
4
covid-19 vaccine
4
skin
1
created
1
covid-19
1
vaccine
1

Similar Publications

Itch.

Curr Biol

January 2025

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:

A camping trip will quickly become unpleasant if a horde of mosquitoes descends while you pitch your tent, or you find yourself in a patch of poison oak. Whether due to an insect bite, a poisonous plant, or a chronic skin disease, everyone has experienced the urgent sensation of itch and the sweet relief of scratching. The itch-scratch cycle is so powerful that just reading about itch or seeing someone scratching elicits a strong desire to scratch.

View Article and Find Full Text PDF

A wearable antifouling electrochemical sensor integrated with an antimicrobial microneedle array for uric acid detection in interstitial fluid.

Anal Chim Acta

February 2025

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China. Electronic address:

Wearable microneedle array (MNA) based electrochemical sensors have gained increasing attention for their capability to analyze biomarkers in the interstitial fluid (ISF), enabling noninvasive, continuous monitoring of health parameters. However, challenges such as nonspecific adsorption of biomolecules on the sensor surfaces and the risk of infection at the microneedle penetration sites hinder their practical application. Herein, a wearable dual-layer microneedle patch was prepared to overcome these issues by integrating an antimicrobial microneedle layer with an antifouling sensing layer.

View Article and Find Full Text PDF

Contraceptive patch in Mexico, an underused option.

Gac Med Mex

January 2025

Terminal 4 Communications, Hilversum, Netherlands.

Introduction: The transdermal patch is an effective contraceptive with advantages over other hormonal methods. However, the percentage of patch's users is 2.8 %.

View Article and Find Full Text PDF

The skin, our first line of defense against external threats, combines a physical barrier and a rich microbial community. Disruptions of this community, for example, due to infectious injury, have been linked to a decrease in bacteria diversity and to mild to severe pathological conditions. Although some progress has been made in the field, possibilities/procedures for restoring the skin microbiome are still far from ideal.

View Article and Find Full Text PDF

Gas-propelled anti-hair follicle aging microneedle patch for the treatment of androgenetic alopecia.

J Control Release

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China. Electronic address:

Existing treatments for androgenetic alopecia (AGA) are unsatisfactory, owing to the two major reasons: (1) Oxidative stress and vascularization deficiency in the perifollicular environment provoke the premature senescence of hair follicles, limiting transformation from the telogen to the anagen phase; (2) The amount of drug delivered to the perifollicular region located in the deep dermis is very limited for passive drug delivery systems. Herein, we developed a gas-propelledmicroneedle patch integrated with ferrum-chelated puerarin/quercetin nanoparticles (PQFN) to increase drug accumulation in hair follicles and reshape the perifollicular environment for improved hair-regenerating effects. PQFN can rejuvenate testosterone (Tes)-induced senescence of dermal papilla cells by scavenging ROS, restoring mitochondrial function, regulating signaling pathways related to hair regeneration, and upregulating hair growth-promoting genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!