Plants sense and respond to molecular signals associated with the presence of pathogens and their virulence factors. Mechanical signals generated during pathogenic invasion may also be important, but their contributions have rarely been studied. Here, we investigate the potential role of a mechanosensitive ion channel, MscS-like (MSL)10, in defense against the bacterial pathogen in . We previously showed that overexpression of MSL10-GFP, phospho-mimetic versions of MSL10, and the gain-of-function allele all produce dwarfing, spontaneous cell death, and the hyperaccumulation of reactive oxygen species. These phenotypes are shared by many autoimmune mutants and are frequently suppressed by growth at high temperature in those lines. We found that the same was true for all three hypermorphs. In addition, we show that the SGT1/RAR1/HSP90 cochaperone complex was required for dwarfing and ectopic cell death, PAD4 and SID2 were partially required, and the immune regulators EDS1 and NDR1 were dispensable. All hypermorphs exhibited reduced susceptibility to infection by strain DC3000 and DC3000 expressing the avirulence genes or but not DC3000 and showed an accelerated induction of expression compared with wild-type plants. Null mutants were delayed in induction and displayed modest susceptibility to infection by coronatine-deficient pv. . Finally, stomatal closure was reduced in loss-of-function mutants in response to pv. . These data show that MSL10 modulates pathogen responses and begin to address the possibility that mechanical signals are exploited by the plant for pathogen perception.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/MPMI-08-21-0207-FI | DOI Listing |
Exp Cell Res
March 2025
School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China; Xuzhou Stomatological Hospital, Xuzhou, 221007, China. Electronic address:
Hydrogel, as the most suitable bio-scaffold material for simulating extracellular matrix, can be used to study the influence of material mechanical properties on cell behavior under 3D conditions. Mechanical stimulation plays an important role in cartilage differentiation, especially for the mechanosensitive cell-bone marrow mesenchymal stem cells (BMSCs). Currently, TRPV4 and Cav1.
View Article and Find Full Text PDFHear Res
March 2025
Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA. Electronic address:
Sensory transduction in auditory hair cells gates mechanosensitive ion channels, converting sound information into electrical signals (Zheng and Holt, 2021). Previously, we found that Transmembrane channel (TMC) proteins 1 and 2 form the pore of hair cell transduction channels (Pan et al., 2013; 2018).
View Article and Find Full Text PDFJ Dent Res
March 2025
Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore. Center to Advance Chronic Pain Research, Baltimore, MD, USA.
Multiple sensory afferents, including mechanosensitive and nociceptive nerves, are projected to the periodontium. Peptidergic afferents expressing transient receptor potential vanilloid 1 (TRPV1), a receptor for capsaicin, mediate pain caused by orthodontic forces. However, their role in orthodontic force-induced alveolar bone remodeling is poorly understood as is the contribution of mechanosensitive ion channels such as Piezo2 in nociceptive nerves.
View Article and Find Full Text PDFSci Signal
March 2025
Science Signaling, AAAS, Washington, DC 20005, USA. Email:
A mechanosensitive ion channel in a sensory neuron population suppresses the function of thermogenic tissues.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Stowers Institute for Medical Research, Kansas City, MO 64110.
Neural crest cells (NCC) comprise a heterogeneous population of cells with variable potency that contribute to nearly every tissue and organ throughout the body. Considered unique to vertebrates, NCC are transiently generated within the dorsolateral region of the neural plate or neural tube during neurulation. Their delamination and migration are crucial for embryo development as NCC differentiation is influenced by their final resting locations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!