Recent progress with the DNA repair mutants of Chinese hamster ovary cells.

J Cell Sci Suppl

Biomedical Sciences Division, Lawrence Livermore National Laboratory, CA 94550.

Published: November 1987

Repair-deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant, which is noted for its very high sister-chromatid exchange frequencies. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to chlorodeoxyuridine (CldUrd). After EcoRI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25-30 kilobases (kb) was present. Since the DNA molecules used to produce these transformants were sheared to less than 50 kb in size, the correcting gene should be small enough to clone in a cosmid vector. Using drug-resistance markers to select for hybrids after fusion, we have done complementation experiments with ultraviolet light (u.v.)-sensitive mutants and have identified a sixth complementation group, line UV61. Additionally, CHO mutants UV27-1 and MMC-2, isolated in other laboratories, were found to belong to UV group 3, which is represented by line UV24. To study the behaviour of transfected DNA molecules in repair-deficient cells, we treated plasmid pSV2gpt with either u.v. radiation or cis-diamminedichloroplatinum(II) (cis-DDP) and introduced the damaged DNA into normal CHO cells (AA8) and mutants UV4 and UV5. Unrepaired damage to the plasmid was indicated by loss of colony-forming ability of the transfected cells in selective medium containing mycophenolic acid. With u.v. damage, the differential survival of the cell lines was similar to that seen when whole cells are treated with u.v. However, with cis-DDP damage, mutant UV4 did not exhibit the extreme hypersensitivity (50-fold) that occurs when cells are treated. This result suggests that UV4 cells may be able to repair cross-links in transfected DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.1984.supplement_6.6DOI Listing

Publication Analysis

Top Keywords

cells treated
12
cells
9
dna repair
8
mutants chinese
8
chinese hamster
8
hamster ovary
8
cho cells
8
dna molecules
8
transfected dna
8
dna
7

Similar Publications

Clonal hematopoiesis of indeterminate potential (CHIP) is a condition where blood or bone marrow cells carry mutations associated with hematological malignancies. Individuals with CHIP have an increased risk of developing hematological malignancies, atherosclerotic cardiovascular disease, and all-cause mortality. Bone marrow transplantation (BMT) of cells carrying CHIP mutations into irradiated mice are useful procedures to investigate the dynamics of clonal expansion and potential therapeutic strategies, but myeloablative conditioning can induce confounding effects.

View Article and Find Full Text PDF

Background: Transarterial chemoembolization (TACE) is the first-line therapeutic option for patients with intermediate-stage hepatocellular carcinoma (HCC). Tumor neovascularization allows tumor growth and may facilitate the release of circulating tumor cells (CTCs) to the bloodstream after TACE. We investigated the relationship between early release of CTCs and radiological response after TACE.

View Article and Find Full Text PDF

Extracellular vesicle surface engineering with integrins (ITGAL & ITGB2) to specifically target ICAM-1-expressing endothelial cells.

J Nanobiotechnology

January 2025

Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Extracellular vesicles (EVs) are taken up by most cells, however specific or preferential cell targeting remains a hurdle. This study aims to develop an EV that targets cells involved in inflammation, specifically those expressing intercellular adhesion molecule-1 (ICAM-1). To target these cells, we overexpress the ICAM-1 binding receptor "lymphocyte function-associated antigen-1" (LFA-1) in HEK293F cells, by sequential transfection of plasmids of the two LFA-1 subunits, ITGAL and ITGB2 (CD11a and CD18).

View Article and Find Full Text PDF

Background: Both oxidative stress and autoimmune responses play crucial roles in the development of vitiligo. Under oxidative stress, the apoptotic melanocytes expose self-antigens and release high mobility group box 1 (HMGB1), triggering autoimmune activation and recruiting CD8 T cells. This process further leads to the destruction of melanocytes, resulting in the lack of melanin granules.

View Article and Find Full Text PDF

Osteosarcoma (OS) is a commonly observed malignant tumor in orthopedics that has a very poor prognosis. The endosomal sorting complex required for transport (ESCRT) is important for the development and progression of cancer and may be a significant target for cancer therapy. First, we built a prognostic signature using 7 ESCRT-related genes (ERGs) to predict OS patient prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!