Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lack of attention to obstacles on the floor or walking path may cause trip and fall accidents. The preparatory activity in the motor cortex to the perturbation associated with obstacle avoidance movements with cognitive task is still unclear. The purpose of this study was to investigate the motor cortical activity involved in the preparation and execution of concurrent obstacle avoidance movement and cognitive task. Twenty young adults were required to step over obstacles that were projected on the floor while performing a cognitive task. The electroencephalogram was recorded, and the movement-related cortical potentials (MRCP) aligned by foot dorsiflexion were evaluated. There was no significant difference in the number of contacts between the toe and the obstacle between the obstacle avoidance task and obstacle avoidance with cognitive task; however, the distance between the toe and the obstacle just before obstacle avoidance movement was significantly extended in the latter task. The amplitude and the onset of MRCP during the dual task were decreased and delayed, respectively, compared with the simple obstacle avoidance movement task. These results suggest that the young participants changed their clearance strategy to stepping over the obstacle during the concurrent motor and cognitive dual task to reduce motor cortical activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-021-06268-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!