No biomarkers are available to predict patients at risk of developing hypertension induced by VEGF-pathway inhibitors. This study aimed to identify predictive biomarkers of hypertension induced by these drugs using a discovery-replication approach. The discovery set included 140 sorafenib-treated patients (TARGET study) genotyped for 973 SNPs in 56 genes. The most statistically significant SNPs associated with grade ≥2 hypertension were tested for association with grade ≥2 hypertension in the replication set of a GWAS of 1039 bevacizumab-treated patients from four clinical trials (CALGB/Alliance). In the discovery set, rs444904 (G > A) in PIK3R5 was associated with an increased risk of sorafenib-induced hypertension (p = 0.006, OR = 3.88 95% CI 1.54-9.81). In the replication set, rs427554 (G > A) in PIK3R5 (in complete linkage disequilibrium with rs444904) was associated with an increased risk of bevacizumab-induced hypertension (p = 0.008, OR = 1.39, 95% CI 1.09-1.78). This study identified a predictive marker of drug-induced hypertension that should be evaluated for other VEGF-pathway inhibitors.ClinicalTrials.gov Identifier:NCT00073307 (TARGET).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799524 | PMC |
http://dx.doi.org/10.1038/s41397-021-00261-5 | DOI Listing |
Surg Obes Relat Dis
December 2024
General Surgery Department, Bariatric Surgery Program, Hospital Privado Universitario de Córdoba, Córdoba, Argentina.
Background: Women represent 40% of patients undergoing bariatric surgery. This highlights the importance of understanding its effects on pregnancy and newborns (NBs).
Objective: To compare pregnancy and neonatal outcomes between a group of pregnant women with obesity and those who had prior bariatric surgery.
J Nucl Med
January 2025
Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China; and
The purpose of this study was to investigate the feasibility of using F-labeled fibroblast activation protein inhibitor (FAPI) PET/CT in assessing the fibrotic remodeling of the pulmonary artery (PA) and the right ventricle (RV) in pulmonary arterial hypertension (PAH). In a rat model of monocrotaline-induced PAH, rats were euthanized at different time points for tissue analysis (fibroblast activation protein immunofluorescence and Masson's trichrome staining) after completing F-FAPI PET/CT and hemodynamic measurements. Thirty-eight PAH patients were enrolled to participate in F-FAPI PET/CT imaging, with right heart catheterization and echocardiography performed within 1 wk to assess pulmonary hemodynamics and cardiac function.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
SUT Hospital, Thiruvananthapuram, Kerala, India.
This case report describes an adult man in his 50s with a history of type 2 diabetes and previously well-controlled hypertension, who presented with uncontrolled hypertension, muscle weakness and fatigue. Biochemical testing revealed hypokalaemia. There was no evidence of renal/renovascular disease.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad-22060, KP, Pakistan.
Cinnamic acid (CA) possesses important cardiovascular effects such as cardioprotective, antiatherogenic, antihyperlipidemic and antioxidant, which predicts its potential role in the treatment of hypertension. The study was executed to investigate the antihypertensive potential of CA in Sprague Dawley (SD) rats followed by evaluation in diverse vascular preparations. Invasive blood pressure monitoring technique was used in normotensive and hypertensive rats, under anesthesia.
View Article and Find Full Text PDFSci Adv
January 2025
Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA.
Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!