The bioaccumulation and biotransformation of tetrabromoethylcyclohexane (TBECH) in maize were investigated. Furthermore, the roles of plant biomacromolecules such as lipid transfer proteins (LTPs), CYP and GST enzymes in driving the biological processes of TBECH stereoisomers were explored. The uptake and translocation of TBECH in maize were diastereo- and enantio-selective. Isomerization from α- to δ-TBECH and β- to γ-TBECH, and metabolites of debromination, hydroxylation and TBECH-GSH adducts were identified in maize roots. The gene expressions of LTPs, CYPs and GSTs were extensively changed in maize after exposure to technical TBECH. CYP and GST enzyme activities as well as GST31 and CYP71C3v2 gene expressions were selectively induced or inhibited by TBECH diastereomers over time. TBECH was able to dock into the active sites and bind with specific residues of the typical biomacromolecules ZmLTP1.6, GST31 and CYP71C3v2, indicating their roles in the bioaccumulation and metabolization of TBECH. Binding modes and affinities to biomacromolecules were significantly different between α- and β-TBECH, which contributed to their stereo-selectivity. This study provided a deep understanding of the biological fate of TBECH, and revealed the driving molecular mechanisms of the selectivity of TBECH stereoisomers in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127610 | DOI Listing |
J Hazard Mater
February 2022
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
The bioaccumulation and biotransformation of tetrabromoethylcyclohexane (TBECH) in maize were investigated. Furthermore, the roles of plant biomacromolecules such as lipid transfer proteins (LTPs), CYP and GST enzymes in driving the biological processes of TBECH stereoisomers were explored. The uptake and translocation of TBECH in maize were diastereo- and enantio-selective.
View Article and Find Full Text PDFSci Total Environ
January 2021
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China.
The phytotoxicities of TBECH diastereomers to plants at the biochemical and molecular levels were investigated in a hydroponic study by using maize as a model plant. The results showed that TBECH could induce the production of two species of reactive oxygen species (ROS), O and HO, in maize tissues. The accumulation of ROS was the highest when maize was exposed to β-TBECH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!