MAGED2 controls vasopressin-induced aquaporin-2 expression in collecting duct cells.

J Proteomics

Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; III Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus, Denmark. Electronic address:

Published: February 2022

Mutations in the Melanoma-Associated Antigen D2 (MAGED2) cause antenatal Bartter syndrome type 5 (BARTS5). This rare disease is characterized by perinatal loss of urinary concentration capability and large urine volumes. The underlying molecular mechanisms of this disease are largely unclear. Here, we study the effect of MAGED2 knockdown on kidney cell cultures using proteomic and phosphoproteomic analyses. In HEK293T cells, MAGED2 knockdown induces prominent changes in protein phosphorylation rather than changes in protein abundance. MAGED2 is expressed in mouse embryonic kidneys and its expression declines during development. MAGED2 interacts with G-protein alpha subunit (GNAS), suggesting a role in G-protein coupled receptors (GPCR) signalling. In kidney collecting duct cell lines, Maged2 knockdown subtly modulated vasopressin type 2 receptor (V2R)-induced cAMP-generation kinetics, rewired phosphorylation-dependent signalling, and phosphorylation of CREB. Maged2 knockdown resulted in a large increase in aquaporin-2 abundance during long-term V2R activation. The increase in aquaporin-2 protein was mediated transcriptionally. Taken together, we link MAGED2 function to cellular signalling as a desensitizer of V2R-induced aquaporin-2 expression. SIGNIFICANCE: In most forms of Bartter Syndrome, the underlying cause of the disease is well understood. In contrast, the role of MAGED2 mutations in a newly discovered form of Bartter Syndrome (BARTS5) is unknown. In our manuscript we could show that MAGED2 modulates vasopressin-induced protein and phosphorylation patterns in kidney cells, providing a broad basis for further studies of MAGED2 function in development and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2021.104424DOI Listing

Publication Analysis

Top Keywords

maged2 knockdown
16
maged2
12
bartter syndrome
12
aquaporin-2 expression
8
collecting duct
8
changes protein
8
protein phosphorylation
8
increase aquaporin-2
8
maged2 function
8
maged2 controls
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!