Rice straw and pig manure pellets (RPP) and sorghum straw and pig manure pellets (SPP) were used to identify their competition as the flexible feedstock of anaerobic digestion with one-year indoor storage. The results indicated the effect of time on their characteristic was tiny during storage period, such as density, calorific value, total solid, volatile solid, ratio of carbon and nitrogen, and lignocellulosic components. Biogas yields of stored RPP and SPP were 8.8% and 26.7% lower than that of fresh pig manure (PM), and 45.4% and 56.1% higher than the sum of corresponding straw and PM digestion alone, respectively. Improvements in biodegradability were observed in co-densified biomass anaerobic digestion. Net biogas yield of RPP was 24.2% higher than that of rice straw, considering volatile matter loss and biogas yield decline during densification and storage stage. Priority of manure and supplement of co-densified biomass were proposed for feedstock supply on demand.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.126345DOI Listing

Publication Analysis

Top Keywords

anaerobic digestion
12
pig manure
12
rice straw
8
straw pig
8
manure pellets
8
co-densified biomass
8
biogas yield
8
agricultural wastes
4
wastes co-densification
4
co-densification solution
4

Similar Publications

Microbial Fuel Cells (MFCs) are innovative environmental engineering systems that harness the metabolic activities of microbial communities to convert chemical energy in waste into electrical energy. However, MFC performance optimization remains challenging due to limited understanding of microbial metabolic mechanisms, particularly with complex substrates under realistic environmental conditions. This study investigated the effects of substrate complexity (acetate vs.

View Article and Find Full Text PDF

Anaerobic digestion is a crucial process in wastewater treatment, renowned for its sustainable biogas production capabilities and the simultaneous reduction of environmental pollution. However, dysregulation of vital biological processes and pathways can lead to reduced efficiency and suboptimal biogas output, which can be seen through low counts per million of sequences related to three critical control points for methane synthesis. Namely, tetrahydromethanopterin S-methyltransferase (MTR), methyl-coenzyme reductase M (MCR), and CoB/CoM heterodisulfide oxidoreductase (HDR) are the last reactions that must occur.

View Article and Find Full Text PDF

Effect of zero-valent iron particle size on alleviating acid stress in anaerobic digestion of food waste.

Environ Res

January 2025

School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, 518055 Shenzhen, China.

This work evaluated the effect of zero-valent iron (ZVI) particle size (150 μm-100 nm) on the performance of food waste anaerobic digestion (AD) under various acid stress conditions. The results indicated that ZVI significantly improved the AD performance, ensuring successful CH production even under high acid stress. However, the extent of this promoting effect was highly dependent on the particle size.

View Article and Find Full Text PDF

Antibiotic resistance genes in anaerobic digestion: Unresolved challenges and potential solutions.

Bioresour Technol

January 2025

Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China; School of Public Health, The University of Hong Kong, Hong Kong, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong Special Administrative Region. Electronic address:

Antimicrobial resistance (AMR) threatens public health, necessitating urgent efforts to mitigate the global impact of antibiotic resistance genes (ARGs). Anaerobic digestion (AD), known for volatile solid reduction and energy generation, also presents a feasible approach for the removal of ARGs. This review encapsulates the existing understanding of ARGs and antibiotic-resistant bacteria (ARB) during the AD process, highlighting unresolved challenges pertaining to their detection and quantification.

View Article and Find Full Text PDF

Graph-based deep learning for predictions on changes in microbiomes and biogas production in anaerobic digestion systems.

Water Res

January 2025

School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea. Electronic address:

Anaerobic digestion (AD), which relies on a complex microbial consortium for efficient biogas generation, is a promising avenue for renewable energy production and organic waste treatment. However, understanding and optimising AD processes are challenging because of the intricate interactions within microbial communities and the impact of volatile fatty acids (VFAs) on biogas production. To address these challenges, this study proposes the application of graph convolutional networks (GCNs) to comprehensively model AD processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!