Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antimicrobial peptides (AMPs) are known to play an important role in natural immunity. Moreover, the diverse biological activities of AMPs showed great potency in treating many diseases. Thus, in this study, we used an AMP, that is, pardaxin, from a marine fish (Pardachirus marmoratus), which has been reported to possess antibacterial and antitumor activities. We first investigated the mechanisms of pardaxin in promoting osteogenic differentiation in vitro and in vivo. As per our data, it was determined that pardaxin could stimulate bone morphogenetic protein-2 (BMP-2) and downstream cascade. The activation of BMP-2 could further induce the phosphorylation of Akt and extracellular signal-regulated kinase (ERK). Additionally, the activation of p-Akt and p-ERK could prompt the elevation and translocation of runt-related transcription factor 2 (runx-2), which is associated with osteoblast differentiation. The translocation of runx-2 initiated transcription and translation of osteogenesis-related markers, including alkaline phosphatase (ALP), osterix, and osteocalcin. Pardaxin significantly facilitated preosteoblast cells in mineralization and reversed dexamethasone- (DM-) induced zebrafish bone formation deficiency by activating the osteogenesis pathway. Therefore, we suggest that pardaxin could be a possible candidate for osteoporosis treatment and a promising therapeutic agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2021.170686 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!