Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli.

J Biol Chem

Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Center for Structural Biology, Pennsylvania State University, University Park, Pennsylvania, USA. Electronic address:

Published: December 2021

After transcription termination, cellular RNA polymerases (RNAPs) are occasionally trapped on DNA, impounded in an undefined post-termination complex (PTC), limiting the free RNAP pool and subsequently leading to inefficient transcription. In Escherichia coli, a Swi2/Snf2 family of ATPase called RapA is known to be involved in countering such inefficiency through RNAP recycling; however, the precise mechanism of this recycling is unclear. To better understand its mechanism, here we determined the structures of two sets of E. coli RapA-RNAP complexes, along with the RNAP core enzyme and the elongation complex, using cryo-EM. These structures revealed the large conformational changes of RNAP and RapA upon their association that has been implicated in the hindrance of PTC formation. Our results along with DNA-binding assays reveal that although RapA binds RNAP away from the DNA-binding main channel, its binding can allosterically close the RNAP clamp, thereby preventing its nonspecific DNA binding and PTC formation. Taken together, we propose that RapA acts as a guardian of RNAP by which RapA prevents nonspecific DNA binding of RNAP without affecting the binding of promoter DNA recognition σ factor, thereby enhancing RNAP recycling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8666675PMC
http://dx.doi.org/10.1016/j.jbc.2021.101404DOI Listing

Publication Analysis

Top Keywords

rnap
9
swi2/snf2 family
8
family atpase
8
escherichia coli
8
rnap recycling
8
rnap rapa
8
ptc formation
8
nonspecific dna
8
dna binding
8
rapa
6

Similar Publications

Proteins that selectively bind to a target of interest are foundational components of research pipelines , diagnostics , and therapeutics . Current immunization-based , display- based , and computational approaches for discovering binders are laborious and time- consuming - taking months or more, suffer from high false positives - necessitating extensive secondary screening, and have a high failure rate, especially for disordered proteins and other challenging target classes. Here we establish Phage-Assisted Non-Continuous Selection of Protein Binders (PANCS-binders), an selection platform that links the life cycle of M13 phage to target protein binding though customized proximity-dependent split RNA polymerase biosensors, allowing for complete and comprehensive high-throughput screening of billion-plus member protein variant libraries with high signal-to-noise.

View Article and Find Full Text PDF

Unlabelled: The activity of DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) together account for nearly all methylated nucleotides in the K-12 MG1655 genome. Previous studies have shown that perturbation of DNA methylation alters global gene expression, but it is unclear whether the methylation state of Dam or Dcm target sites regulates local transcription. In recent genome-wide experiments, we observed an underrepresentation of Dam sites in transcriptionally silent extended protein occupancy domains (EPODs), prompting us to hypothesize that EPOD formation is caused partially by low Dam site density.

View Article and Find Full Text PDF

Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes.

iScience

January 2025

Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.

T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using .

View Article and Find Full Text PDF

Optical tweezers in biomedical research - progress and techniques.

J Med Life

November 2024

Biophysics and Cellular Biotechnology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.

Optical tweezers, which leverage the forces exerted by radiation pressure, have emerged as a pivotal technique for precisely manipulating and analyzing microscopic particles. Since Arthur Ashkin's ground-breaking work in the 1970s and the subsequent development of the single-beam optical trap in 1986, the capabilities of optical tweezers have expanded significantly, enabling the intricate manipulation of biological specimens at the micro- and nanoscale. This review elucidates the foundational principles of optical trapping and their extensive applications in the biomedical sciences.

View Article and Find Full Text PDF

Deciphering the Coupling State-Dependent Transcription Termination in the Escherichia coli Galactose Operon.

Mol Microbiol

January 2025

Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea.

The distance between the ribosome and the RNA polymerase active centers, known as the mRNA loop length, is crucial for transcription-translation coupling. Despite the existence of multiple expressomes with varying mRNA loop lengths, their in vivo roles remain largely unexplored. This study examines the mechanisms governing transcription termination in the Escherichia coli galactose operon, revealing a crucial role in the transcription and translation coupling state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!