Biodegradable and biobased surface active agents are renewable and environmentally friendly alternatives to petroleum derived or oleochemical surfactants. However, they are accompanied by relatively high production costs. In this study, the aim was to reduce the production costs for an innovative type of microbial biosurfactant: bolaform sophorolipids, produced by the yeast Starmerella bombicola ΔsbleΔat. A novel continuous retentostat set-up was performed whereby continuous broth microfiltration retained the biomass in the bioreactor while performing an in situ product separation of bolaform sophorolipids. Although a mean volumetric productivity of 0.56 g L h was achieved, it was not possible to maintain this productivity, which collapsed to almost 0 g L h. Therefore, two process adaptations were evaluated, a sequential batch strategy and a phosphate limitation alleviation strategy. The sequential batch set-up restored the mean volumetric productivity to 0.66 g L h for an additional 132 h but was again followed by a productivity decline. A similar result was obtained with the phosphate limitation alleviation strategy where a mean volumetric productivity of 0.54 g L h was reached, but a productivity decline was also observed. Whole genome variant analysis uncovered no evidence for genomic variations for up to 1306 h of retentostat cultivation. Untargeted metabolomics analysis identified 8-hydroxyguanosine, a biomarker for oxidative RNA damage, as a key metabolite correlating with high bolaform sophorolipid productivity. This study showcases the application of a retentostat to increase bolaform sophorolipid productivity and lays the basis of a multi-omics platform for in depth investigation of microbial biosurfactant production with S. bombicola.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2021.11.002 | DOI Listing |
Biotechnol Biofuels Bioprod
August 2024
Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
Background: The yeast Starmerella bombicola is renowned for its highly efficient sophorolipid production, reaching titers and productivities of (over) 200 g/L and 2 g/(L h), respectively. This inherent efficiency has led to the commercialization of sophorolipids. While the sophorolipid biosynthetic pathway has been elucidated a few years ago, in this study, it is revisited and true key intermediates are revealed.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
April 2024
Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1, Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
N Biotechnol
July 2023
Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; Institute for Global Food Security, School of Biological Sciences, Queen's University, University Road, Belfast BT7 1NN, United Kingdom. Electronic address:
Sophorolipids are biobased and biodegradable glycolipid surface-active agents contributing to the shift from petroleum to biobased surfactants, associated with clear environmental benefits. However, their production cost is currently too high to allow commercialisation. Therefore, a continuous sophorolipid production process was evaluated, i.
View Article and Find Full Text PDFN Biotechnol
January 2022
Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Ghent, Belgium; Bio Base Europe Pilot Plant (BBEPP), Ghent, Belgium. Electronic address:
Biodegradable and biobased surface active agents are renewable and environmentally friendly alternatives to petroleum derived or oleochemical surfactants. However, they are accompanied by relatively high production costs. In this study, the aim was to reduce the production costs for an innovative type of microbial biosurfactant: bolaform sophorolipids, produced by the yeast Starmerella bombicola ΔsbleΔat.
View Article and Find Full Text PDFJ Phys Chem B
May 2019
Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering , Ghent University, Technologiepark 125 , 9052 Ghent , Belgium.
Conventional head-chain but also more exotic divalent, Gemini, or bolaform amphiphiles have in common well-defined hydrophilic and hydrophobic blocks with often a predictable self-assembly behavior. However, new categories of amphiphiles, such as microbial biosurfactants, challenge such conventional understanding because of the poorly defined boundaries between the hydrophilic and hydrophobic portions. Microbial glycolipids, such as sophorolipids, rhamnolipids, or cellobioselipids, interesting biodegradable, nontoxic, alternatives to synthetic surfactants, all represent interesting examples of atypical amphiphiles with partially predictable self-assembly properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!