A functional carrageenan/agar-based film was prepared by combining tea tree oil Pickering emulsion (PET) and zinc sulfide nanoparticles (ZnSNP). PET was formulated using tea tree essential oil stabilized with nanocellulose fibers. PET and ZnSNPs were uniformly dispersed in the binary polymer matrix and formed compatible films. The incorporation of ZnSNPs improved the mechanical strength, whereas PET slightly decreased the strength, but the combined addition of ZnSNP and PET maintained the mechanical strength with slightly improved flexibility. The addition of ZnSNP and PET, alone or in combination, slightly improved the water vapor barrier, water resistance, and thermal stability of the film. In addition, the carrageenan/agar-based composite membrane showed distinct antioxidant and antibacterial activity. The ZnSNP and PET incorporated binary composite films with enhanced physical and functional properties are likely to be used in active food packaging applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.11.035 | DOI Listing |
Int J Biol Macromol
December 2021
Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea. Electronic address:
A functional carrageenan/agar-based film was prepared by combining tea tree oil Pickering emulsion (PET) and zinc sulfide nanoparticles (ZnSNP). PET was formulated using tea tree essential oil stabilized with nanocellulose fibers. PET and ZnSNPs were uniformly dispersed in the binary polymer matrix and formed compatible films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!