Mining patterns of autonomous vehicle crashes involving vulnerable road users to understand the associated factors.

Accid Anal Prev

Roadway Safety Program, Texas A&M Transportation Institute, 1111 RELLIS Parkway, Bryan, TX 77807, United States. Electronic address:

Published: February 2022

Autonomous or automated vehicles (AVs) have the potential to improve traffic safety by eliminating majority of human errors. As the interest in AV deployment increases, there is an increasing need to assess and understand the expected implications of AVs on traffic safety. Until recently, most of the literature has been based on either survey questionnaires, simulation analysis, virtual reality, or simulation to assess the safety benefits of AVs. Although few studies have used AV crash data, vulnerable road users (VRUs) have not been a topic of interest. Therefore, this study uses crash narratives from four-year (2017-2020) of AV crash data collected from California to explore the direct and indirect involvement of VRUs. The study applied text network and compared the text classification performance of four classifiers - Support Vector Machine (SVM), Naïve Bayes (NB), Random Forest (RF), and Neural Network (NN) and associated performance metrics to attain the objective. It was found that out of 252 crashes, VRUs were, directly and indirectly, involved in 23 and 12 crashes, respectively. Among VRUs, bicyclists and scooterists are more likely to be involved in the AV crashes directly, and bicyclists are likely to be at fault, while pedestrians appear more in the indirectly involvements. Further, crashes that involve VRUs indirectly are likely to occur when the AVs are in autonomous mode and are slightly involved minor damages on the rear bumper than the ones that directly involve VRUs. Additionally, feature importance from the best performing classifiers (RF and NN) revealed that crosswalks, intersections, traffic signals, movements of AVs (turning, slowing down, stopping) are the key predictors of the VRUs-AV related crashes. These findings can be helpful to AV operators and city planners.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aap.2021.106473DOI Listing

Publication Analysis

Top Keywords

vulnerable road
8
road users
8
traffic safety
8
crash data
8
crashes vrus
8
involved crashes
8
involve vrus
8
crashes
6
vrus
6
avs
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!