Surface-facilitated trapping by active sites: From catalysts to viruses.

J Chem Phys

Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA.

Published: November 2021

Trapping by active sites on surfaces plays important roles in various chemical and biological processes, including catalysis, enzymatic reactions, and viral entry into host cells. However, the mechanisms of these processes remain not well understood, mostly because the existing theoretical descriptions are not fully accounting for the role of the surfaces. Here, we present a theoretical investigation on the dynamics of surface-assisted trapping by specific active sites. In our model, a diffusing particle can occasionally reversibly bind to the surface and diffuse on it before reaching the final target site. An approximate theoretical framework is developed, and its predictions are tested by Brownian dynamics computer simulations. It is found that the surface diffusion can be crucial in mediating trapping by active sites. Our theoretical predictions work reasonably well as long as the area of the active site is much smaller than the overall surface area. Potential applications of our approach are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730370PMC
http://dx.doi.org/10.1063/5.0069917DOI Listing

Publication Analysis

Top Keywords

active sites
16
trapping active
12
active
5
surface-facilitated trapping
4
sites
4
sites catalysts
4
catalysts viruses
4
viruses trapping
4
sites surfaces
4
surfaces plays
4

Similar Publications

Probing the properties of PTEN specific botulinum toxin type E mutants.

J Neural Transm (Vienna)

January 2025

Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany.

Botulinum neurotoxins (BoNT) are established biopharmaceuticals for neuromuscular and secretory conditions based on their ability to block neurotransmitter release from neurons by proteolyzing specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, a mutant catalytic domain of serotype E (LC/E) exhibiting 16 mutations was reported to cleave the phosphatase and tensin homolog (PTEN). This molecule represents an attractive new target in neurons as several reports support PTEN knockdown as a strategy to stimulate axonal regeneration after injury.

View Article and Find Full Text PDF

Rational Regulation of High-Entropy Perovskite Oxides through Hole Doping for Efficient Oxygen Electrocatalysis.

ACS Appl Mater Interfaces

January 2025

Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan 450006, China.

Due to the high configuration entropy, unique atomic arrangement, and electronic structures, high-entropy materials are being actively pursued as bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in rechargeable zinc-air batteries (ZABs). However, a relevant strategy to enhance the catalytic activity of high-entropy materials is still lacking. Herein, a hole doping strategy has been employed to enable the high-entropy perovskite La(CrMnFeCoNi)O to effectively catalyze the ORR and OER.

View Article and Find Full Text PDF

Biological semi-passive mine water treatment technologies are used in the mining industry as an alternative to or in conjunction with active treatment systems to remediate mine impacted water (MIW) containing nitrate and selenium oxyanions such as selenate and selenite. In semi-passive biological treatment systems, MIW is pumped through a saturated, porous media (either a gravel bed or waste rock) which provides ample surface area for biofilm growth and the creation of anoxic, subaqueous environments. Additional nutrients and carbon sources are pumped into the system to encourage the growth of microbes that biochemically reduce selenate and selenite to insoluble reduced Se species such as selenium nanoparticles (SeNP) by respiring selenate and selenite.

View Article and Find Full Text PDF

Enhanced oxygen evolution reaction through improved lattice oxygen activity via carbon dots incorporation into MOFs.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China. Electronic address:

Emerging of the lattice oxygen mechanism (LOM) provides a new opportunity for enhancing oxygen evolution reaction (OER) activity. However, its stability suffers from metal cation dissolution and lattice oxygen anionic redox chemistry. In this paper, carbon dots (CDs)-modified nickel-iron MOF (Metal-Organic Framework) nanosheets (NiFe-BDC/CDs) were prepared for efficient OER electrocatalysis.

View Article and Find Full Text PDF

Interface engineering and electronic modulation enable precise tuning of the electronic structure, thereby maximizing the efficacy of active sites and significantly enhancing the activity and stability of the electrocatalyst. Herein, a hybrid material composed of Ni-modified CoS nanoparticles ((Co, Ni)S) encapsulated within an N, S co-doped carbon matrix (SNC) and anchored onto S-doped carbonized wood fibers (SCWF) is synthesized using a straightforward simultaneous carbonization and sulfidation approach. Density functional theory (DFT) calculations reveal that the highly electronegative Ni element promotes electron cloud migration from Co to Ni, shifting the d-band center of Co closer to the Fermi level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!