Skeletal muscles play important roles in critical body functions and their injury or disease can lead to limitation of mobility and loss of independence. Current treatments result in variable functional recovery, while reconstructive surgery, as the gold-standard approach, is limited due to donor shortage, donor-site morbidity, and limited functional recovery. Skeletal muscle tissue engineering (SMTE) has generated enthusiasm as an alternative solution for treatment of injured tissue and serves as a functional disease model. Recently, bioprinting has emerged as a promising tool for recapitulating the complex and highly organized architecture of skeletal muscles at clinically relevant sizes. Here, skeletal muscle physiology, muscle regeneration following injury, and current treatments following muscle loss are discussed, and then bioprinting strategies implemented for SMTE are critically reviewed. Subsequently, recent advancements that have led to improvement of bioprinting strategies to construct large muscle structures, boost myogenesis in vitro and in vivo, and enhance tissue integration are discussed. Bioinks for muscle bioprinting, as an essential part of any bioprinting strategy, are discussed, and their benefits, limitations, and areas to be improved are highlighted. Finally, the directions the field should expand to make bioprinting strategies more translational and overcome the clinical unmet needs are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957559 | PMC |
http://dx.doi.org/10.1002/adma.202105883 | DOI Listing |
Regen Biomater
November 2024
Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.
Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK.
The significance of three-dimensional (3D) bioprinting in the domain of regenerative medicine and tissue engineering is readily apparent. To create a multi-functional bioinspired structure, 3D bioprinting requires high-performance bioinks. Bio-inks refer to substances that encapsulate viable cells and are employed in the printing procedure to construct 3D objects progressive through successive layers.
View Article and Find Full Text PDFLab Chip
January 2025
Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
Tissue engineering offers immense potential for addressing the unmet needs in repairing tissue damage and organ failure. Vascularization, the development of intricate blood vessel networks, is crucial for the survival and functions of engineered tissues. Nevertheless, the persistent challenge of ensuring an ample nutrient supply within implanted tissues remains, primarily due to the inadequate formation of blood vessels.
View Article and Find Full Text PDFCells
December 2024
Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
Cardiovascular diseases resulting from myocardial infarction (MI) remain a leading cause of death worldwide, imposing a substantial burden on global health systems. Current MI treatments, primarily pharmacological and surgical, do not regenerate lost myocardium, leaving patients at high risk for heart failure. Engineered heart tissue (EHT) offers a promising solution for MI and related cardiac conditions by replenishing myocardial loss.
View Article and Find Full Text PDFBiofabrication
January 2025
Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland.
Tissue-engineered grafts that mimic articular cartilage show promise for treating cartilage injuries. However, engineering cartilage cell-based therapies to match zonal architecture and biochemical composition remains challenging. Decellularized articular cartilage extracellular matrix (dECM) has gained attention for its chondro-inductive properties, yet dECM-based bioinks have limitations in mechanical stability and printability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!