TLR9 signalling inhibits Plasmodium liver infection by macrophage activation.

Eur J Immunol

Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.

Published: February 2022

Recognition of pathogen-associated molecular patterns (PAMPs) through Toll-like receptors (TLRs) plays a pivotal role in first-line pathogen defense. TLRs are also likely triggered during a Plasmodium infection in vivo by parasite-derived components. However, the contribution of innate responses to liver infection and to the subsequent clinical outcome of a blood infection is not well understood. To assess the potential effects of enhanced TLR-signalling on Plasmodium infection, we systematically examined the effect of agonist-primed immune responses to sporozoite inoculation in the P. berghei/C57Bl/6 murine malaria model. We could identify distinct stage-specific effects on the course of infection after stimulation with two out of four TLR-ligands tested. Priming with a TLR9 agonist induced killing of pre-erythrocytic stages in the liver that depended on macrophages and the expression of inducible nitric oxide synthase (iNOS). These factors have previously not been recognized as antigen-independent effector mechanisms against Plasmodium liver stages. Priming with TLR4 and -9 agonists also translated into blood stage-specific protection against experimental cerebral malaria (ECM). These insights are relevant to the activation of TLR signalling pathways by adjuvant systems of antimalaria vaccine strategies. The protective role of TLR4-activation against ECM might also explain some unexpected clinical effects observed with pre-erythrocytic vaccine approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.202149224DOI Listing

Publication Analysis

Top Keywords

plasmodium liver
8
liver infection
8
plasmodium infection
8
infection
6
tlr9 signalling
4
signalling inhibits
4
plasmodium
4
inhibits plasmodium
4
liver
4
infection macrophage
4

Similar Publications

Malaria is a highly lethal infectious disease caused by parasites. These parasites are transmitted to vertebrate hosts when mosquitoes of the genus probe for a blood meal. Sporozoites, the infectious stage of , transit to the liver within hours of injection into the dermis.

View Article and Find Full Text PDF

Sequestration of parasites in the placental vasculature causes increased morbidity and mortality in pregnant compared to non-pregnant patients in malaria- endemic regions. In this study, outbred pregnant CD1 mice with semi allogeneic fetuses were infected with transgenic or mock-inoculated by mosquito bite at either embryonic day (E) 6 (first trimester-equivalent) or 10 (second trimester- equivalent) and compared with non-pregnant females. -infected mosquitoes had greater biting avidity for E10 dams than uninfected mosquitoes, which was not apparent for E6 dams nor non-pregnant females.

View Article and Find Full Text PDF

Unlabelled: Malaria, caused by spp., is a global health concern linked to anemia and increased mortality. Compensatory erythropoiesis seen during acute anemia results in an increased circulating reticulocyte count ( , immature RBC) a key factor in understanding the relationship between pre-existing anemia and burden.

View Article and Find Full Text PDF

Genetically attenuated parasites show promise as a next-generation malaria vaccine.

Trends Parasitol

January 2025

Department of Molecular Parasitology, Institute of Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany. Electronic address:

Metabolically active, genetically attenuated Plasmodium falciparum parasite lines are promising second-generation malaria vaccine candidates. Lamers et al. and Roozen et al.

View Article and Find Full Text PDF

Targeting T-Cell Activation for Malaria Immunotherapy: Scoping Review.

Pathogens

January 2025

Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia.

Malaria remains a critical global health issue due to high mortality rates, drug resistance, and low treatment efficacy. The genetic variability of proteins complicates the development of long-lasting immunity, as it impedes the human immune system's ability to sustain effective responses. T cells play a crucial role in combating malaria, but the parasite's complex life cycle-spanning liver and blood stages-presents significant challenges in effectively activating and targeting these cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!