Background: Freshness is an important quality of squid with respect to determining the market price. The methods of evaluation of freshness fail to be widely used as a result of the lack of rapidity and quantitation. In the present study, a rapid and non-destructive quantification of squid freshness by Fourier transform infrared spectroscopy (FTIR) spectra combined with chemometric techniques was performed.

Results: The relatively linear content change of trimethylamine (TMA-N) and dimethylamine (DMA-N) of squid during storage at 4 °C indicated their feasibility as a freshness indicator, as also confirmed by sensory evaluation. The spectral changes were mainly caused by the degradation of proteins and the production of amines by two-dimensional infrared correlation spectroscopy, among which TMA-N, DMA-N and putrescine were the main amines. The successive projections algorithm (SPA) was employed to select the sensitive wavenumbers to freshness for modeling prediction including partial least-squares regression, support vector regression (SVR) and back-propagation artificial neural network. Generally, the SPA-SVR model of the selected characteristic wavenumber showed a higher prediction accuracy for DMA-N (R  = 0.951; RMSE  = 0.218), whereas both SPA-SVR (R  = 0.929; RMSE  = 2.602) and Full-SVR (R  = 0.941; RMSE  = 2.492) models had a higher predictive ability of TMA-N.

Conclusion: The results of the present study demonstrate that FTIR spectroscopy coupled with multivariate calibration shows significant potential for the prediction of freshness in squid. © 2021 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.11640DOI Listing

Publication Analysis

Top Keywords

rapid non-destructive
8
chemometric techniques
8
freshness
7
squid
5
non-destructive freshness
4
freshness evaluation
4
evaluation squid
4
squid ftir
4
ftir coupled
4
coupled chemometric
4

Similar Publications

The detection of adulteration in apple juice concentrate is critical for ensuring product authenticity and consumer safety. This study evaluates the effectiveness of artificial neural networks (ANN) and support vector machines (SVM) in analyzing spectroscopic data to detect adulteration in apple juice concentrate. Four techniques-UV-visible, fluorescence, near-infrared (NIR) spectroscopy, and time domain H nuclear magnetic resonance relaxometry (H NMR)-were used to generate data from both authentic and adulterated apple juice samples.

View Article and Find Full Text PDF

Marigold flowers, which are also known as L., are widely recognized for their bright colors and health benefits. Therefore, the purpose of this research was to investigate the quality of total carotenoid content (TCC) and quercetin in marigold flowers, specifically the edible ones, using visible near-infrared spectroscopy (Vis-NIRS) technology.

View Article and Find Full Text PDF

Aptamer-Coupled Polymer-Grafted FeO Nanoparticles for Highly Efficient Isolation of Exosomes.

Macromol Rapid Commun

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, P. R. China.

Exosomes, the bioactive particles secreted by various cells, are essential in mediating cellular communication. However, their small size and the interference from non-exosome proteins present significant hurdles for their rapid and non-destructive capture and release. To overcome these obstacles, a promising strategy to efficiently and selectively isolate exosomes from mesenchymal stem cells (MSCs) is developed by using CD63 aptamer-conjugated magnetic nanoparticles (FeO-Aptamer).

View Article and Find Full Text PDF

Non-destructive color sensors are widely applied for rapid analysis of various biological and healthcare point-of-care applications. However, existing red, green, blue (RGB)-based color sensor systems, relying on the conversion to human-perceptible color spaces like hue, saturation, lightness (HSL), hue, saturation, value (HSV), as well as cyan, magenta, yellow, key (CMYK) and the CIE L*a*b* (CIELAB) exhibit limitations compared to spectroscopic methods. The integration of machine learning (ML) techniques presents an opportunity to enhance data analysis and interpretation, enabling insights discovery, prediction, process automation, and decision-making.

View Article and Find Full Text PDF

Direct detection of phycocyanin in sediments by hyperspectral imaging.

J Paleolimnol

December 2024

Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.

Unlabelled: Cyanobacteria are ubiquitous aquatic organisms with a remarkable evolutionary history reaching as far as 1.9 Ga. They play a vital role in ecosystems yet also raise concerns due to their association with harmful algal blooms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!