Dissolved oxygen (DO) concentration in water is one of the key parameters for assessing river water quality. Artificial intelligence (AI) methods have previously proved to be accurate tools for DO concentration prediction. This study presents the implementation of a deep learning approach applied to a recurrent neural network (RNN) algorithm. The proposed deep recurrent neural network (DRNN) model is compared with support vector machine (SVM) and artificial neural network (ANN) models, formerly shown to be robust AI algorithms. The Fanno Creek in Oregon (USA) is selected as a case study and daily values of water temperature, specific conductance, streamflow discharge, pH, and DO concentration are used as input variables to predict DO concentration for three different lead times ("t + 1," "t + 3," and "t + 7"). Based on Pearson's correlation coefficient, several input variable combinations are formed and used for prediction. The model prediction performance is evaluated using various indices such as correlation coefficient, Nash-Sutcliffe efficiency, root mean square error, and mean absolute error. The results identify the DRNN model ([Formula: see text]) as the most accurate among the three models considered, highlighting the potential of deep learning approaches for water quality parameter prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-021-09586-xDOI Listing

Publication Analysis

Top Keywords

neural network
16
recurrent neural
12
dissolved oxygen
8
oxygen concentration
8
deep recurrent
8
water quality
8
deep learning
8
drnn model
8
correlation coefficient
8
concentration
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!