Purpose: Whole-body dynamic balance is necessary for both athletic activities and activities of daily living. This study aimed to investigate the effect of acute dynamic balance training on neural networks.

Methods: We evaluated resting-state functional connectivity (rs-FC), white matter fiber density, fiber-bundle cross-section, and gray matter volume in 28 healthy young adults (14 women) before and after 30 min of slackline training using a randomized, counterbalanced crossover design.

Results: The rs-FC between the left lateral prefrontal cortex (PFC) and the foot area of the primary sensorimotor (SM1) cortex increased significantly after slackline training compared with that after a control condition involving ergometer-based aerobic exercise. In addition, changes in rs-FC between the left lateral PFC and the primary sensorimotor were correlated with performance changes after training (i.e., offline process) rather than online learning. We also observed a main effect of time between the hippocampus and the cingulate cortex, including the anterior areas, and between the bilateral lateral PFC. Although we observed no structural changes, fiber density in the commissural fiber pathway before the first balance assessment was correlated with initial balance capability.

Conclusions: Our findings demonstrate that acute whole-body dynamic balance training alters specific rs-FC, and that this change is associated with performance changes after training. In addition, rs-FC changes in cognitive regions were modulated by both acute dynamic balance training and aerobic exercise. These findings have the potential to influence various fields (e.g., sports neuroscience, neurorehabilitation) and may aid in the development of methods that can improve motor and cognitive performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8920009PMC
http://dx.doi.org/10.1249/MSS.0000000000002829DOI Listing

Publication Analysis

Top Keywords

dynamic balance
20
balance training
16
whole-body dynamic
12
functional connectivity
8
acute whole-body
8
training
8
acute dynamic
8
fiber density
8
slackline training
8
rs-fc left
8

Similar Publications

This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.

View Article and Find Full Text PDF

[Purpose] The Y Balance test is a dynamic balance assessment tool widely used in sports. Although its reliability has been established in professional male athletes, its suitability for female high-school athletes remains unclear. Therefore, this study aimed to evaluate the reliability of the Y Balance test in this population.

View Article and Find Full Text PDF

Postmenopausal osteoporosis is a chronic inflammatory disease characterized by decreased bone mass and increased bone fracture risk. Estrogen deficiency during menopause plays a major role in post-menopausal osteoporosis by influencing bone, immune, and gut cell activity. In the gut, estrogen loss decreases tight junction proteins that bind epithelial cells of the intestinal barrier together.

View Article and Find Full Text PDF

The growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).

View Article and Find Full Text PDF

Kidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximates -like niche spacing and dynamic tubule tip rearrangement, as well as -like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)- RE arranged during T ransfection (RET) tyrosine kinase signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!