Background: According to the World Health Organization, only 5%-15% of people in lower-income countries have access to prostheses. This is largely due to low availability of materials and high costs of prostheses. 3D-printing techniques have become easily accessible and can offer functional patient-specific components at relatively low costs, reducing or bypassing the current manufacturing and postprocessing steps. However, it is not yet clear how 3D-printing can provide a sustainable solution to the low availability of limb prostheses for patients with amputations in lower-income countries.

Objective: To evaluate 3D-printing for the production of limb prostheses in lower-income countries and lower-middle-income countries (LLMICs).

Study Design: Systematic Review.

Methods: Literature searches, completed in April 2020, were performed in PubMed, Embase, Web of Science, and Cochrane Library. The search results were independently screened and reviewed by four reviewers. Only studies that examined interventions using prostheses in LLMICs for patients with limb amputations were selected for data extraction and synthesis. The web was also searched using Google for projects that did not publish in a scientific journal.

Results: Eighteen studies were included. Results were reported regarding country of use, cost and weight, 3D-printing technology, satisfaction, and failure rate.

Conclusion: Low material costs, aesthetic appearance, and the possibility of personalized fitting make 3D-printed prostheses a potential solution for patients with limb amputations in LLMICs. However, the lack of (homogeneous) data shows the need for more published (scientific) research to enable a broader availability of knowledge about 3D-printed prostheses for LLMICs.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PXR.0000000000000057DOI Listing

Publication Analysis

Top Keywords

3d-printed prostheses
12
lower-income countries
8
low availability
8
limb prostheses
8
prostheses llmics
8
patients limb
8
limb amputations
8
prostheses
7
prostheses developing
4
countries
4

Similar Publications

Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.

View Article and Find Full Text PDF

With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.

View Article and Find Full Text PDF

Objective: This systematic review and meta-analysis compares the efficacy and complication rate of absorbable versus non-absorbable 3D-printed, patient-customized, maxillofacial implants in facial trauma patients.

Data Sources: A comprehensive search of four databases (PubMed, Scopus, Web of Science, and Cochrane) was conducted.

Methods: A systematic review and single-proportion meta-analysis was conducted employing PRISMA guidelines.

View Article and Find Full Text PDF

The effects of heat-assisted vat photopolymerization (HVPP) on the physical and mechanical properties of 3D-printed dental resins, including the morphometric stability of 3D-printed crowns, were investigated. A resin tank was designed to maintain the resin at 30, 40, and 50 ℃ during the 3D printing process. Test specimens were fabricated using a commercial dental resin, with untreated resin serving as the control group.

View Article and Find Full Text PDF

Computer-aided design and fabrication of statistically shaped nasal prostheses: A feasibility study.

J Prosthet Dent

January 2025

Head and Neck Surgeon and Head, Verwelius 3D Lab, Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Statement Of Problem: A nasal prosthesis may compensate for a partial or complete defect of the nose associated with trauma or amputation. However, the design and production is time-consuming, expensive, and expertize-dependent. Computer-generated prosthesis models and 3D printing can optimize the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!