A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nano-graphene oxide depresses neurotransmission by blocking retrograde transport of mitochondria. | LitMetric

Nano-graphene oxide depresses neurotransmission by blocking retrograde transport of mitochondria.

J Hazard Mater

Stomatological Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China. Electronic address:

Published: February 2022

The application of graphene-family nanomaterials (GFNs) in neuromedicine has recently gained increased attention, but the associated exposure risk for synaptic function and the underlying mechanism remains obscure. The results of this study utilizing nanosized graphene oxide (nGO) suggest that they exert depressive effects on neurotransmission, mainly due to energy deficiency at synaptic contacts. Mitophagy is activated but fails to renew mitochondria and maintain mitochondrial-mediated energy metabolism because of blockage of autophagosome transport through the microtubule system from the axonal terminal to the soma. Further investigation of the underlying mechanism indicates that nGO increases the level of microtubule detyrosination, which restrains loading of the dynactin-dynein motor complex onto microtubules and subsequently inhibits the efficacy of the retrograde transport route. Thus, our study reveals the underlying mechanism by which nGO depresses neurotransmission, and contributes to our understanding of the neurobiological effects of GFNs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.127660DOI Listing

Publication Analysis

Top Keywords

underlying mechanism
12
depresses neurotransmission
8
retrograde transport
8
nano-graphene oxide
4
oxide depresses
4
neurotransmission blocking
4
blocking retrograde
4
transport mitochondria
4
mitochondria application
4
application graphene-family
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!