Transdisciplinary solutions are needed to achieve the sustainability of ecosystem services for future generations. We propose a framework to identify the causes of ecosystem function loss and to forecast the future of ecosystem services under different climate and pollution scenarios. The framework (i) applies an artificial intelligence (AI) time-series analysis to identify relationships among environmental change, biodiversity dynamics and ecosystem functions; (ii) validates relationships between loss of biodiversity and environmental change in fabricated ecosystems; and (iii) forecasts the likely future of ecosystem services and their socioeconomic impact under different pollution and climate scenarios. We illustrate the framework by applying it to watersheds, and provide system-level approaches that enable natural capital restoration by associating multidecadal biodiversity changes to chemical pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tree.2021.09.008DOI Listing

Publication Analysis

Top Keywords

ecosystem services
12
future ecosystem
8
environmental change
8
ecosystem
5
time machine
4
framework
4
machine framework
4
framework monitoring
4
monitoring prediction
4
biodiversity
4

Similar Publications

Regulating (ecosystem) services of an urban natural area: a case study in the State of Rio de Janeiro, Brazil.

Chemosphere

December 2024

Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, RJ, 21941-909, Brazil. Electronic address:

Peri-urban conserved natural or semi-natural areas provide several ecosystem services and assist in reducing air pollution in cities. The aim of this study is to assess the contribution to the improvement of air quality of a small area (<1 km) adjacent to a city in the Metropolitan Region of Rio de Janeiro (Brazil), which is seriously affected by vehicular and industrial emissions of pollutants. Hydrocarbon (HC) and carbonyl compounds (CC) levels were determined, by employing TO-15 and TO-11A US EPA Methods, respectively, in both the urban and green areas.

View Article and Find Full Text PDF

Antimicrobial resistance is considered a global One Health threat. Controlling selection pressure by reducing antibiotic use in livestock is a significant component of the response to this threat. The science concerning use and resistance is complicated and affected by time from antibiotic exposure, changing bacterial fitness, and varies by drug and pathogen.

View Article and Find Full Text PDF

Rapid human movement and dengue transmission in Bangladesh: a spatial and temporal analysis based on different policy measures of COVID-19 pandemic and Eid festival.

Infect Dis Poverty

December 2024

Ecosystem Change and Population Health Research Group, Centre for Immunology and Infection Control, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, Brisbane, QLD, 4059, Australia.

Background: Rapid human movement plays a crucial role in the spatial dissemination of the dengue virus. Nevertheless, robust quantification of this relationship using both spatial and temporal models remains necessary. This study aims to explore the spatial and temporal patterns of dengue transmission under various human movement contexts.

View Article and Find Full Text PDF

Planted forests have expanded globally over the last three decades and are expected to act as carbon sinks to mitigate further climate change. However, the planted coniferous forests in Japan are now predicted to shrink in area and age in the future. To quantify the impact of the shrinking and aging of Japanese cedar (Cryptomeria japonica D.

View Article and Find Full Text PDF

Descriptive Mappings of Global-Related Research Studies on Invertebrates in the Context of Agriculture.

ScientificWorldJournal

December 2024

Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive Campus, P/Bag X1, Mthatha 5117, Eastern Cape, South Africa.

Invertebrates form a vital component of agricultural ecosystems, and they are chief actors in sustaining the functions of the ecosystem and soil health. Scholarly publications that concentrated on visualizing the research outputs and trends on invertebrates and agriculture are scarce. In this paper, we adopted a bibliometric model to extract trends/research studies on invertebrates and agriculture between 1991 and 2022, using scholarly studies retrieved from the Web of Science (WoS) databank.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!