Background: Amnion-derived mesenchymal stem cells (AM-MSCs) are an attractive source of stem cell therapy for patients with irreversible liver disease. However, there are obstacles to their use due to low efficiency and xeno-contamination for hepatic differentiation.
Methods: We established an efficient protocol for differentiating AM-MSCs into hepatic progenitor cells (HPCs) by analyzing transcriptome-sequencing data. Furthermore, to generate the xeno-free conditioned differentiation protocol, we replaced fetal bovine serum (FBS) with polyvinyl alcohol (PVA). We investigated the hepatocyte functions with the expression of mRNA and protein, secretion of albumin, and activity of CYP3A4. Finally, to test the transplantable potential of HPCs, we transferred AM-MSCs along with hepatic progenitors after differentiated days 11, 12, and 13 based on the expression of hepatocyte-related genes and mitochondrial function. Further, we established a mouse model of acute liver failure using a thioacetamide (TAA) and cyclophosphamide monohydrate (CTX) and transplanted AM-HPCs in the mouse model through splenic injection.
Results: We analyzed gene expression from RNA sequencing data in AM-MSCs and detected downregulation of hepatic development-associated genes including GATA6, KIT, AFP, c-MET, FGF2, EGF, and c-JUN, and upregulation of GSK3. Based on this result, we established an efficient hepatic differentiation protocol using the GSK3 inhibitor, CHIR99021. Replacing FBS with PVA resulted in improved differentiation ability, such as upregulation of hepatic maturation markers. The differentiated hepatocyte-like cells (HLCs) not only synthesized and secreted albumin, but also metabolized drugs by the CYP3A4 enzyme. The best time for translation of AM-HPCs was 12 days from the start of differentiation. When the AM-HPCs were transplanted into the liver failure mouse model, they settled in the damaged livers and differentiated into hepatocytes.
Conclusion: This study offers an efficient and xeno-free conditioned hepatic differentiation protocol and shows that AM-HPCs could be used as transplantable therapeutic materials. Thus, we suggest that AM-MSC-derived HPCs are promising cells for treating liver disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588618 | PMC |
http://dx.doi.org/10.1186/s13287-021-02470-y | DOI Listing |
Zhonghua Gan Zang Bing Za Zhi
December 2024
Department of Infectious Disease Medicine, Fifth Medical Center, PLA General Hospital, National Clinical Research Center of Infectious Diseases, Beijing100039, China.
End-stage liver disease includes liver failure and decompensated cirrhosis resulting from various etiologies and often leads to patient mortality due to complications and clinical symptoms such as severe jaundice, ascites, hepatic encephalopathy, coagulopathy, and hepatorenal syndrome. Liver transplantation is currently regarded as the most effective treatment, but its clinical application is limited by the shortage of donors, elevated expenses, and post-transplant rejection. Stem cells are a group of cells with multidirectional differentiation potential and self-renewal ability, which can improve the clinical indicator outcomes through mechanisms such as immunoregulation and promotion of tissue repair in patients with end-stage liver disease.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
The fasting hypoglycemic effect of casein hydrolysate (CH) was investigated in db/db diabetic-like mice using a multiomics integrated analysis of peptidome, transcriptome, and metabolome. Results showed that the oral administration of CH at a dose of 600 mg/kg/day for 4 weeks reduced the fasting blood glucose levels by 14.73 ± 9.
View Article and Find Full Text PDFJ Hepatol
January 2025
Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, , Chinese Academy of Medical Sciences, Wuhan 430030, China. Electronic address:
Background & Aims: Hepatocellular carcinoma (HCC) is an aggressive malignancy with few effective treatment options. H3Q5ser, a serotonin-based histone modification mediated by transglutaminase 2 (TGM2), affects diverse biological processes, such as neurodevelopment. The role of TGM2-mediated H3Q5ser in HCC progression remains unclear.
View Article and Find Full Text PDFPLoS One
January 2025
ESQlabs Gmbh, Saterland, Germany.
Digital twins, driven by data and mathematical modelling, have emerged as powerful tools for simulating complex biological systems. In this work, we focus on modelling the clearance on a liver-on-chip as a digital twin that closely mimics the clearance functionality of the human liver. Our approach involves the creation of a compartmental physiological model of the liver using ordinary differential equations (ODEs) to estimate pharmacokinetic (PK) parameters related to on-chip liver clearance.
View Article and Find Full Text PDFCureus
December 2024
Pathology and Laboratory Medicine, Saint Michael's Medical Center, Newark, USA.
Perivascular epithelioid cell tumors (PEComas) are a rare group of mesenchymal neoplasms composed of perivascular epithelioid cells. While commonly found in the kidney, uterus, and soft tissues, PEComas of the liver are exceedingly rare. We present a case of a PEComa incidentally discovered in a 73-year-old female patient undergoing evaluation for abdominal pain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!