Although foamed plastic insulation is widely used in construction in the Korean market, it is vulnerable to fire. To improve the flame retardancy, the method of flame-retardant coating with the EG in water-soluble state on the surface of expanded polystyrene (EPS) beads has been widely used. However, polystyrene beads coated with a water-soluble flame retardant easily separate the coated flame retardant in manufacturing. In this study is devised a flame-retardant coating and two steps of coating process for adhering the flame-retardant coating film evenly to the surface of the polystyrene bead without exfoliation. It was analyzed whether a flame-retardant EPS (FR-EPS) with excellent flame retardancy could be manufactured using polystyrene beads coated in this way. Ten FR-EPS samples satisfied the HF-1 and V-0 levels in horizontal and vertical burning tests, respectively. The THR of eight FR-EPS samples for ten minutes did not exceed 8 MJ∙m and the maximum HRR did not exceed 200 kW∙m for more than ten consecutive seconds. FR-EPS passed the building material standard of semi-nonflammability in Korean regulations, in contrast to commercial EPS, which have not passed the semi-nonflammability standard. It was also analyzed how effective the designed coating is in this study, comparing it with composites that were planned to improve the flame resistance of polystyrene, as reported in the literature. Flame Retardancy Index (FRI) values of FR-EPS proved the "excellent" level and had higher values compared with other polystyrene composites. These results demonstrated that the coated EPS containing a water-soluble flame retardant manufactured from EG and two steps of application with the coating solution achieved fire safety standard regulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587118PMC
http://dx.doi.org/10.3390/ma14216729DOI Listing

Publication Analysis

Top Keywords

flame retardancy
16
flame-retardant coating
12
flame retardant
12
polystyrene bead
8
flame
8
improve flame
8
polystyrene beads
8
beads coated
8
water-soluble flame
8
fr-eps samples
8

Similar Publications

Hexabromocyclododecane (HBCD) is a brominated flame retardant, that is added, but not chemically bonded, to consumer products. HBCD is sold as a commercial-grade HBCD mixture containing three major stereoisomers: alpha (α), beta (β), and gamma (γ), with relative amounts of 12% for α-HBCD, 6% for β-HBCD, and 82% for γ-HBCD. HBCDs are widely measured in the environment and in biological matrices.

View Article and Find Full Text PDF

Chitosan-based films with excellent flame retardancy and highly sensitive fire response for application in self-powered dual fire alarm systems.

Int J Biol Macromol

January 2025

School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, People's Republic of China. Electronic address:

The widespread use of flammable building materials severely threatens residential safety. Additionally, traditional fire-alarm systems may fail in complex fire environments due to power disruptions. It is crucial to enhance the flame retardancy of material while establishing effective fire detection and early warning systems.

View Article and Find Full Text PDF

Triboelectric nanogenerators (TENGs) have gained significant attention for ability to convert mechanical energy into electrical energy. As the applications of TENG devices expand, their safety and reliability becomes priority, particularly where there is risk of fire or spontaneous combustion. Flame-retardant materials can be employed to address these safety concerns without compromising the performance and efficiency of TENGs.

View Article and Find Full Text PDF

The speciation and thermal transformation characteristics of fluorine and chlorine in industrial wastes.

Environ Technol

January 2025

China State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.

The study investigated the chlorine and fluorine contents in three types of industrial solid waste: textile, plastic, and paper waste, utilizing various analytical methods. Significant variations in the proportions of organic and inorganic chlorine were observed among the waste types. During heat treatment, the majority of chlorine converts to a volatile state, with fixed chlorine content showing a correlation with organic chlorine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!