A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of Photon Radiation Attenuation Capability of Different Clay Materials. | LitMetric

Investigation of Photon Radiation Attenuation Capability of Different Clay Materials.

Materials (Basel)

Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21511, Egypt.

Published: November 2021

This work aims to experimentally report the radiation attenuation factors for four different clays (red, ball, kaolin and bentonite clays) at four selected energies (emitted from Am-241, Cs-137, and Co-60). The highest relative difference in the mass attenuation coefficient (MAC) is equal to -3.02%, but most of the other results are much smaller than this value, proving that the experimental and theoretical data greatly agree with each other. From the MAC results, the shielding abilities of the clay samples at 0.060 MeV follow the order of: bentonite > red > ball > kaolin. Thus, at low energies, the bentonite clay sample provides the most effective attenuation capability out of the tested clays. The half value layer (HVL) increases as energy increases, which suggests that, only a thin clay sample is needed to sufficiently absorb the radiation at low energies, while at higher energies a thicker sample is needed to shield the same amount of high energy radiated. Furthermore, bentonite clay has the lowest HVL, while the kaolin clay has the greatest HVL at all energies. The radiation protection efficiency (RPE) values at 0.060 MeV are equal to 97.982%, 97.137%, 94.242%, and 93.583% for bentonite clay, red clay, ball clay, and kaolin clay, respectively. This reveals that at this energy, the four clay samples can absorb almost all of the incoming photons, but the bentonite clay has the greatest attenuation capability at this energy, while kaolin clay has the lowest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588141PMC
http://dx.doi.org/10.3390/ma14216702DOI Listing

Publication Analysis

Top Keywords

bentonite clay
16
clay
13
attenuation capability
12
kaolin clay
12
radiation attenuation
8
red ball
8
ball kaolin
8
clay samples
8
0060 mev
8
low energies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!