Current Trends in Automotive Lightweighting Strategies and Materials.

Materials (Basel)

CanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5, Canada.

Published: November 2021

The automotive lightweighting trends, being driven by sustainability, cost, and performance, that create the enormous demand for lightweight materials and design concepts, are assessed as a part of the circular economy solutions in modern mobility and transportation. The current strategies that aim beyond the basic weight reduction and cover also the structural efficiency as well as the economic and environmental impact are explained with an essence of guidelines for materials selection with an eco-friendly approach, substitution rules, and a paradigm of the multi-material design. Particular attention is paid to the metallic alloys sector and progress in global R&D activities that cover the "lightweight steel", conventional aluminum, and magnesium alloys, together with well-established technologies of components manufacturing and future-oriented solutions, and with both adjusting to a transition from internal combustion engines to electric vehicles. Moreover, opportunities and challenges that the lightweighting creates are discussed with strategies of achieving its goals through structural engineering, including the metal-matrix composites, laminates, sandwich structures, and bionic-inspired archetypes. The profound role of the aerospace and car-racing industries is emphasized as the key drivers of lightweighting in mainstream automotive vehicles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588011PMC
http://dx.doi.org/10.3390/ma14216631DOI Listing

Publication Analysis

Top Keywords

automotive lightweighting
8
current trends
4
trends automotive
4
lightweighting
4
lightweighting strategies
4
strategies materials
4
materials automotive
4
lightweighting trends
4
trends driven
4
driven sustainability
4

Similar Publications

Galvanized high-strength steel has emerged as a key focus in automotive lightweighting research. During resistance spot welding of galvanized steel, the phenomenon of liquid metal embrittlement (LME) can occur, which is characterized by the appearance of irregular cracks on the weld spot surface. However, the impact of LME cracks on the mechanical properties of joints remains unclear.

View Article and Find Full Text PDF

A Depth Awareness and Learnable Feature Fusion Network for Enhanced Geometric Perception in Semantic Correspondence.

Sensors (Basel)

October 2024

Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China.

Deep learning is becoming the most widely used technology for multi-sensor data fusion. Semantic correspondence has recently emerged as a foundational task, enabling a range of downstream applications, such as style or appearance transfer, robot manipulation, and pose estimation, through its ability to provide robust correspondence in RGB images with semantic information. However, current representations generated by self-supervised learning and generative models are often limited in their ability to capture and understand the geometric structure of objects, which is significant for matching the correct details in applications of semantic correspondence.

View Article and Find Full Text PDF

The automotive sector is actively pursuing a lightweighting strategy as a means to urgently decrease greenhouse gas emissions, which are a significant driver of climate change. The development of lightweight composite structures has been identified as crucial for enhancing part performance while mitigating negative environmental impacts and adopting energy-efficient manufacturing methods. This comprehensive study aimed to decrease the main reinforcement content of talc in commercial compounds while integrating graphene derived from waste polypropylene (PP) grown on talc and graphene nanoplatelet obtained from waste tires by upcycling processes into the PP compound.

View Article and Find Full Text PDF

Materials Challenges in the Electric Vehicle Transition.

Environ Sci Technol

July 2024

School of Engineering and Technology, UNSW Canberra, 2610 Canberra, Australian Capital Territory, Australia.

The ongoing transition toward electric vehicles (EVs) is changing materials used for vehicle production, of which the consequences for the environmental performance of EVs are not well understood and managed. We demonstrate that electrification coupled with lightweighting of automobiles will lead to significant changes in the industry's demand not only for battery materials but also for other materials used throughout the entire vehicle. Given the automotive industry's substantial consumption of raw materials, changes in its material demands are expected to trigger volatilities in material prices, consequently impacting the material composition and attractiveness of EVs.

View Article and Find Full Text PDF

The increasing emissions of greenhouse gases (GHG) and pollutants like particulate matter and nitrogen oxides (NOx) have led to environmental concerns. Hybrid and electric powertrains are being introduced as means to reduce pollutant emissions, especially at the local level. Additionally, the finite availability of fossil fuel sources, which are used to produce gasoline and diesel, highlights the need for alternative technical solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!