The process of noble metals ions recovery and the removal small fraction of nanoparticles from waste solution is an urgent topic not only from the economic but also ecology point of view. In this paper, the use of activated carbon fibers (ACF) as a "trap" for gold nanoparticles obtained by a chemical reduction method is described. The synthesized nanoparticles were stabilized either electrostatically or electrosterically and then deposited on carbon fibers or activated carbon fibers. Moreover, the deposition of metal on fibers was carried out in a batch reactor and a microreactor system. It is shown, that process carried out in the microreactor system is more efficient (95%) as compared to the batch reactor and allows for effective gold nanoparticles removal from the solution. Moreover, for similar conditions, the adsorption time of the AuNPs on ACF is shortened from 11 days for the process carried out in the batch reactor to 2.5 min in the microreactor system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585125 | PMC |
http://dx.doi.org/10.3390/ma14216598 | DOI Listing |
RSC Adv
January 2025
LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto Rua Dr Roberto Frias 4200-465 Porto Portugal
Additive Manufacturing (AM) was evaluated as a promising technology for constructing photocatalytic reactors due to its inherent ability to produce complex geometries with high precision and customization. In this work, a 3D structure was designed to achieve a good light distribution inside a cylindrical batch reactor and printed using the stereolithography (SLA) technique. A hybrid material composed of a commercial photoreactive resin (Formlabs Clear V4) and the benchmark photocatalyst TiO P25 Evonik (1 wt%) was prepared and characterized by scanning electron microscopy (SEM) and rheological and mechanical methods.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Environment and Climate, Jinan University, Guangzhou, 510632, PR China. Electronic address:
Nitrogen heterocyclic antibiotics (NHAs) pollution poses a significant threat to aquatic ecosystems. Ozonation (O) pretreatment is beneficial for the removal of total nitrogen (TN) in antibiotics by facilitating subsequent biological treatment. However, nitrogen transformation and bacterial community responses when treating NHAs by O-coupled biological processes remain unclear.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, CDMX, Mexico City, Mexico.
The relationship of microbial community and cometabolic consumption of 2-chlorophenol (2-CP) in a nitrifying sequencing batch reactor (SBR) was studied. The assessment of the population dynamics of the nitrifying sludge during the cometabolic 2-CP consumption with increasing ammonium (NH) concentrations in the SBR showed the presence of 39 different species of which 10 were always present in all cycles. Fifty-five percent of the species found were grouped as Proteobacteria (45% as β-proteobacteria and 10% as γ-proteobacteria class), 30% as Acidobacteria, and 15% as Deinococcus-Thermus phyla.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy.
The management of biological sludge from wastewater treatment plants (WWTPs) poses a significant environmental challenge due to increasing sludge production and the presence of emerging pollutants. This study investigates an innovative solution by integrating a thermophilic aerobic membrane reactor (TAMR) into the sludge treatment line of a medium-size WWTP, aiming to minimize biological sludge output while enhancing resource recovery. The study involved a six-month monitoring of an industrial-scale TAMR system, assessing the reduction in volatile solids (VSs) in thickened sludge and evaluating the compatibility of TAMR residues with conventional activated sludge (CAS) systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!