One approach to tackle the problems created by the vast amounts of construction and demolition waste (CDW) generated worldwide while at the same time lengthening concrete durability and service life is to foster the use of recycled aggregate (RA) rather than natural aggregate (NA). This article discusses the use of polyhydroxyalkanoates (PHAs)-producing mixed microbial cultures (MMCs) to treat the surface of recycled concrete with a view to increase its resistance to water-mediated deterioration. The microorganisms were cultured in a minimal medium using waste pinewood bio-oil as a carbon source. Post-application variations in substrate permeability were determined with the water drop absorption and penetration by water under pressure tests. The significant reduction in water absorption recorded reveals that this bioproduct is a promising surface treatment for recycled concrete.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585264 | PMC |
http://dx.doi.org/10.3390/ma14216545 | DOI Listing |
Materials (Basel)
January 2025
Research Team of Quantitative Methods and Spatial Management, Institute of Agriculture and Horticulture, Faculty of Agricultural Sciences, University of Siedlce, B. Prusa 14, 08-110 Siedlce, Poland.
Plastic film, also known as low-density polyethylene (LDPE), poses serious environmental challenges due to mass production, short life cycle, and poor waste management. The main aim of this paper was to examine the suitability of using agricultural waste film as a binder in construction composites instead of the traditional cement slurry. Molten at temperatures of around 120-150 °C wastes was mixed with fine sand and gravel aggregate as filler.
View Article and Find Full Text PDFSci Rep
January 2025
Research Center of Traffic Disaster Prevention and Mitigation, Jilin Jianzhu University, Jilin Jianzhu University, Xincheng Street, Changchun, 130118, Jilin, China.
To promote the recycling of waste glass and satisfy the demands of environmental sustainability for ultrahigh performance concrete (UHPC), in this study, glass sand was employed to partially or entirely replace machine-made sand, and steel fibres were incorporated to fabricate ultrahigh performance shotcrete (UHPS). The effects of glass sand and steel fibres on the mechanical and electrical properties of composite materials were analysed in this study. Furthermore, alkali‒silica reaction (ASR) tests and microstructural analyses were conducted.
View Article and Find Full Text PDFSci Rep
January 2025
Construction Engineering and Utilities Department, Faculty of Engineering, Zagazig University, Zagazig, 44519, Egypt.
Effective construction waste (CW) management, mainly concrete, brick, and steel, is a critical challenge due to its significant environmental and economic impacts. This study addresses this challenge by proposing multiple linear regression models to predict waste generation in residential buildings within the Egyptian construction industry, considering the influence of factors such as building design and site management features. Using data from 25 case studies, the models demonstrated high predictive accuracy, with adjusted R² values of 0.
View Article and Find Full Text PDFPLoS One
January 2025
School of Foreign Languages, Central South University, Changsha, Hunan, China.
The dissemination of sustainable development concepts in large international events like the Olympics has garnered great attention. As a major international sports event, the Beijing Winter Olympics served as an important platform for showcasing China's sustainable development philosophy through its official news coverage. In this context, metaphor, as a powerful cognitive tool, plays a crucial role in shaping public perception and facilitating the dissemination of values by mapping concrete source domains onto abstract target domains.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Turbomachinery, Lodz University of Technology, Zeromskiego 116 Str., 90-924 Lodz, Poland.
The application of recycled concrete aggregates (RCAs) has become increasingly popular for different types of structures, as presented in several studies. However, depending on the type of structure and the region, RCAs might have different properties. This study aims to investigate the application of RCAs of different origins for substructure layers of the cycle paths located in Central Europe, which was not analysed previously.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!