The mechanical behaviour of strain-hardening cement-based composites (SHCC) under monotonic tensile loading has been the subject of research for many years. The recent research on the SHCC's performance under cyclic loading has enabled the identification of a wide variety of damage phenomena different to those observed under monotonic loading. The article at hand first summarises the experimental evidence of such phenomena in the context of the material performance observed. On this basis, the mechanisms behind these phenomena are discussed and explained using rheological modelling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585213PMC
http://dx.doi.org/10.3390/ma14216444DOI Listing

Publication Analysis

Top Keywords

behaviour strain-hardening
8
strain-hardening cement-based
8
cement-based composites
8
composites shcc
8
rheological model
4
model describe
4
describe cyclic
4
cyclic load-bearing
4
load-bearing behaviour
4
shcc mechanical
4

Similar Publications

Elucidating the effect of chitosan microgel characteristics on the large amplitude oscillatory shear (LAOS) behavior of their stabilized high internal phase emulsions using the sequence of physical processes (SPP) approach and comparison with mayonnaise.

Int J Biol Macromol

January 2025

Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Microbiology in Hubei, Key Laboratory of Fermentation Engineering (Ministry of Education), Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Wuhan 430068, China. Electronic address:

Chitosan microgels (h-CSMs) were prepared by cross-linking hydrophobically modified chitosan with sodium phytate (SP). Emulsions stabilized by h-CSMs with different inter-phase fraction, microgel concentration and cross-linking density were studied of their microstructural and rheological properties. In particular, the large amplitude oscillatory shear (LAOS) of the high internal phase emulsions (HIPEs) stabilized by h-CSMs were systematically analyzed using the Fourier transform with Chebyshev polynomials (FTC) and sequence of physical processes (SPP) methods, to explore their nonlinear rheological properties.

View Article and Find Full Text PDF

Modification of Processability and Shear-Induced Crystallization of Poly(lactic acid).

Polymers (Basel)

December 2024

Japan Advanced Institute of Science and Technology, Graduated School of Advanced Science and Technology, Asahidai, Nomi 923-1292, Ishikawa, Japan.

We studied the rheological properties under both shear and elongational flow and crystallization behaviors after shear history for binary blends of poly(lactic acid) (PLA) and ethylene-vinyl acetate copolymer (EVA) with a slightly lower shear viscosity. EVA was immiscible with PLA and dispersed in droplets in the blend. The addition of EVA significantly reduced the shear viscosity, which is attributed to the interfacial slippage between PLA and EVA.

View Article and Find Full Text PDF

Measuring the biomechanical properties of cell-derived fibronectin fibrils.

Biomech Model Mechanobiol

December 2024

Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA, 23284, USA.

Article Synopsis
  • FN (fibronectin) fibrils are crucial for processes like embryonic development and wound healing, but their mechanical properties are not well understood.
  • A new system allows for the measurement of cell-derived FN fibrils, revealing three types of elasticity (linear, strain-hardening, and nonlinear) and showing that fibril behavior changes with repeated stretching.
  • The average elasticity of these fibrils is about 8 MPa, and they display time-dependent viscoelastic behavior, which could deepen our knowledge of cellular mechanics in development and fibrotic diseases.
View Article and Find Full Text PDF

High Strain Rate Deformation of Heat-Treated AA2519 Alloy.

Materials (Basel)

November 2024

Department of Mechanical Engineering, Howard University, Washington, DC 20059, USA.

This study examined the effects of heat treatment on the microstructure and dynamic deformation characteristics of AA2519 aluminum alloy in T4, T6, and T8 tempers under high strain rates of 1000-4000 s. A Split Hopkinson pressure bar (SHPB) was utilized to characterize the mechanical response, and microstructural analysis was performed to examine the material's microstructure. The findings indicated varied deformation across all three temper conditions.

View Article and Find Full Text PDF

Ethylene/1-octene copolymers exhibit enhanced flexibility and impact resistance compared to polyethylene, which makes them well suited for applications in advanced plastics and elastomers. United-atom molecular dynamics (MD) simulations were conducted to explore the mechanical behavior and deformation mechanisms of ethylene/1-octene copolymers under uniaxial tensile loading. This study systematically examined the influence of temperature, polymer chain length, chain quantity, and strain rate, with a specific focus on how hexyl branch content impacts the mechanical properties of amorphous ethylene/1-octene copolymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!