The microstructural variation and high-temperature flow features of a Ti-55511 alloy in the β region are studied by utilizing double-stage compression with a stepped strain rate. The results demonstrate that the stresses in the latter stage of hot compression markedly reduce as the strain at the previous stage or the strain rate at the previous/latter stage drops. Moreover, the annihilation/interaction of substructures is promoted, and the distinct refinement of the dynamic recrystallization (DRX) in the β grain can be found. However, the coarsening of the β grain and the consumption of dislocation substructures are accelerated at high temperatures. Furthermore, the principal DRX nucleation mechanism of the Ti-55511 alloy during double-stage compression with a stepped strain rate in the β region is discontinuous DRX. Additionally, by using the microstructural variation characteristics related to the forming parameters, a physical mechanism equation is modeled to forecast the forming features, the DRX fraction, and the size of the β grain in the investigated alloy. The forecasted results are in accordance with the tested results, indicating that the established model can accurately forecast the microstructure variation and flow features of the studied alloy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585474PMC
http://dx.doi.org/10.3390/ma14216371DOI Listing

Publication Analysis

Top Keywords

microstructural variation
12
ti-55511 alloy
12
stepped strain
12
strain rate
12
physical mechanism
8
alloy double-stage
8
flow features
8
double-stage compression
8
compression stepped
8
alloy
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!