Most studies on soil enzymes are focused on the upper horizons of the soil profile, even though they transform the soil organic matter at every depth of the soil profile. The aim of this work was to investigate the distribution of β-glucosidase (GLU), nitrate reductase (NR), urease (UR), phosphatase (PHA), dehydrogenase (DHA) and catalase (CAT) activity through 14 trunked soil profiles of the Luvisols formed from a glacial till. The content of microbial biomass carbon (MBC) as well as physicochemical properties such as organic carbon (C), total nitrogen (N), available P, K and Mg, soil density and porosity, pH in KCl and fractional composition were also studied. In general, enzymatic activity was highest in the top 30 cm layer of the profiles and decreased progressively towards the deeper horizons. The exceptions were the NR activity, which was active only in the Ap horizon and whose activity decreased sharply to nearly zero in the Bt horizon and parent rock, and the PHA activity, which was highly active even in the parent rock depth. The decreased availability of carbon and nutrients was the main driver of decreases in microbial abundance and enzymatic activity with depth. The enzymatic activity, when expressed on a C and MBC basis, behaves differently compared to the activity expressed on a soil mass basis. The activity decreased (NR), increased (PHA, UR), showed no clear pattern (GLU) or the changes were not significant (DHA, CAT). The content of C, N, K and P generally decreased with depth, while for Mg, there was no clear direction in the profile distribution. Future studies to characterize the substrate distribution within the soil profile and enzyme stability will provide further insight into the controls on nutrient cycling and related enzymes throughout the soil profiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585432 | PMC |
http://dx.doi.org/10.3390/ma14216364 | DOI Listing |
Bioorg Chem
January 2025
College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108 China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108 China. Electronic address:
Hydroxytyrosol, a naturally occurring chemical with antioxidant and antiviral properties, is widely used in the nutrition, pharmaceutical, and cosmetic industries. In the present study, a modularized cascade composed of Modules 1 and 2 was designed and implemented to convert l-tyrosine to hydroxytyrosol. Module 1 was a four-enzymatic cascade for converting l-tyrosine to tyrosol.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China. Electronic address:
Appropriate vegetation restoration measures are beneficial to ecosystem restoration and nutrient retention in ecologically fragile areas. However, the high water consumption of planted forests and the increasing frequency of drought events may reshape or complicate this ecological process. The effects of forest types and drought stress on nutrient limitation remain unclear.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:
Recombinant GH16B β-agarase-catalyzed liquefaction of 5-7 %(w/v) melted agarose at 50 °C completely hydrolyzed agarose into neoagarohexaose (NA6) and neoagarotetraose (NA4). Subsequent saccharification by recombinant GH50A β-agarase or recombinant GH50A β-agarase/recombinant GH117A α-neoagarobiose hydrolase at 35 °C converted NA6/NA4 into neoagarobiose (NA2) or 3,6-anhydro-L-galactose (L-AHG)/D-galactose, respectively. Purification of NA6/NA4 and NA2 was achieved by Sephadex G-15 column chromatography, while L-AHG was purified by Sephadex G-10, achieving ≥ 98 % purity.
View Article and Find Full Text PDFCommun Integr Biol
December 2024
Department of Life Sciences, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.
Using -rhizobia- interaction networks, we address first the soil invasion success of , and second, we report either -rhizobia partnership should form an isolated module within the symbiosis interaction network. Different indexes were used to determine model invasion success and the network topology. Our results indicated that invasion decreased soil microbial biomass, basal respiration, and enzymatic activities.
View Article and Find Full Text PDFDipeptidyl peptidase 4 (DPP4) is a transmembrane serine exopeptidase abundantly expressed in the kidneys, predominantly in the proximal tubule (PT); however, its non-enzymatic functions in this nephron segment remain poorly understood. While DPP4 physically associates with the Na /H exchanger isoform 3 (NHE3) and its inhibitors exert natriuretic effects, the DPP4 role in blood pressure (BP) regulation remains controversial. This study investigated the effects of PT-specific deletion ( ) and global deletion ( ) on systolic blood pressure (SBP), natriuresis, and NHE3 regulation under baseline and angiotensin II (Ang II)-stimulated conditions in both male and female mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!