The development of novel materials has challenges besides their synthesis. Materials such as novel MXenes are difficult to probe experimentally due to their reduced size and low stability under ambient conditions. Quantum mechanics and molecular dynamics simulations have been valuable options for material properties determination. However, computational materials scientists may still have difficulty finding specific force field models for their simulations. Force fields are usually hard to parametrize, and their parameters' determination is computationally expensive. We show the Lennard-Jones (2-body interactions) combined with the Axilrod-Teller (3-body interactions) parametrization process' applicability for metals and new classes of materials (MXenes). Because this parametrization process is simple and computationally inexpensive, it allows users to predict materials' behaviors under close-to-ambient conditions in molecular dynamics, independent of pre-existing potential files. Using the process described in this work, we have made the Ti2C parameters set available for the first time in a peer-reviewed work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585255PMC
http://dx.doi.org/10.3390/ma14216352DOI Listing

Publication Analysis

Top Keywords

force fields
8
molecular dynamics
8
employing hybrid
4
hybrid lennard-jones
4
lennard-jones axilrod-teller
4
axilrod-teller potentials
4
potentials parametrize
4
parametrize force
4
fields simulation
4
simulation materials'
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!