Boron-Doped Diamond/GaN Heterojunction-The Influence of the Low-Temperature Deposition.

Materials (Basel)

Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, 11/12 Narutowicza Str., 80-233 Gdansk, Poland.

Published: October 2021

We report a method of growing a boron-doped diamond film by plasma-assisted chemical vapour deposition utilizing a pre-treatment of GaN substrate to give a high density of nucleation. CVD diamond was deposited on GaN substrate grown epitaxially via the molecular-beam epitaxy process. To obtain a continuous diamond film with the presence of well-developed grains, the GaN substrates are exposed to hydrogen plasma prior to deposition. The diamond/GaN heterojunction was deposited in methane ratio, chamber pressure, temperature, and microwave power at 1%, 50 Torr, 500 °C, and 1100 W, respectively. Two samples with different doping were prepared 2000 ppm and 7000 [B/C] in the gas phase. SEM and AFM analyses revealed the presence of well-developed grains with an average size of 100 nm. The epitaxial GaN substrate-induced preferential formation of (111)-facetted diamond was revealed by AFM and XRD. After the deposition process, the signal of the GaN substrate is still visible in Raman spectroscopy (showing three main GaN bands located at 565, 640 and 735 cm) as well as in typical XRD patterns. Analysis of the current-voltage characteristics as a function of temperature yielded activation energy equal to 93.8 meV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585340PMC
http://dx.doi.org/10.3390/ma14216328DOI Listing

Publication Analysis

Top Keywords

gan substrate
12
diamond film
8
presence well-developed
8
well-developed grains
8
gan
6
boron-doped diamond/gan
4
diamond/gan heterojunction-the
4
heterojunction-the influence
4
influence low-temperature
4
deposition
4

Similar Publications

Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaO@GaN-composited nanowires for dynamic visual perception.

View Article and Find Full Text PDF

A planktonic population of bacteria can form a biofilm by adhesion and colonization. Proteins known as "adhesins" can bind to certain environmental structures, such as sugars, which will cause the bacteria to attach to the substrate. Quorum sensing is used to establish the population is dense enough to form a biofilm.

View Article and Find Full Text PDF

To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.

View Article and Find Full Text PDF

GaN-on-Si high-electron-mobility transistors have emerged as the next generation of high-powered and cost-effective microwave devices; however, the limited thermal conductivity of the Si substrate prevents the realization of their potential. In this paper, a GaN-on-insulator (GNOI) structure is proposed to enhance the heat dissipation ability of a GaN-on-Si HEMT. Electrothermal simulation was carried out to analyze the thermal performance of the GNOI-on-Si HEMTs with different insulator dielectrics, including SiO, SiC, AlN, and diamond.

View Article and Find Full Text PDF

750 V Breakdown in GaN Buffer on 200 mm SOI Substrates Using Reverse-Stepped Superlattice Layers.

Micromachines (Basel)

November 2024

Guangzhou Wide Bandgap Semiconductor Innovation Center, Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China.

In this work, we demonstrated the epitaxial growth of a gallium nitride (GaN) buffer structure on 200 mm SOI (silicon-on-insulator) substrates. This epitaxial layer is grown using a reversed stepped superlattice buffer (RSSL), which is composed of two superlattice (SL) layers with different Al component ratios stacked in reverse order. The upper layer, with a higher Al component ratio, introduces tensile stress instead of accumulative compressive stress and reduces the in situ curvature of the wafer, thereby achieving a well-controlled wafer bow ≤ ±50 µm for a 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!