Changes in Frequency and Mode Shapes Due to Damage in Steel-Concrete Composite Beam.

Materials (Basel)

Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, al. Piastów 19, 70-310 Szczecin, Poland.

Published: October 2021

This study presents an analysis of changes in the vibration frequency and mode of vibration of a composite beam due to damage. A steel-concrete composite beam was considered, for which numerical analysis (RFE model) and experimental tests were conducted. Two levels of damage were introduced to the beam. To determine the changes in the mode of vibration before and after the damage, the modal assurance criterion (MAC) and its partial variation (PMAC) were applied. The curvature damage factor (CDF) was used to determine the changes in the modal curvature. The natural frequencies were sensitive to the introduced damage. The results show that the MAC is not effective in determining the location of damage in the connection plane. Two different coefficients were introduced to locate the damage. The PMAC was used for sections of subsequent modes of vibration and allowed effectively locating the damage. The CDF considered simultaneous changes in the curvatures of all vibration modes and was effective in locating the damage in the connection plane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584951PMC
http://dx.doi.org/10.3390/ma14216232DOI Listing

Publication Analysis

Top Keywords

composite beam
12
damage
10
frequency mode
8
damage steel-concrete
8
steel-concrete composite
8
mode vibration
8
determine changes
8
damage connection
8
connection plane
8
locating damage
8

Similar Publications

Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal-Polymer Hybrid Structures.

Polymers (Basel)

January 2025

Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.

The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding.

View Article and Find Full Text PDF

The issues of numerous steel beam components and the tendency for deck cracking under negative bending moment zones have long been challenges faced by traditional composite I-beams with flat steel webs. This study introduces an optimized approach by modifying the structural design and material selection, specifically substituting flat steel webs with corrugated steel webs and using ultra-high-performance concrete for the deck in the negative bending moment zone. Three sets of model tests were conducted to compare and investigate the influence of deck material and web forms on the bending and crack resistance of steel-concrete composite I-beams under a negative bending moment zone.

View Article and Find Full Text PDF

The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion-a process of resin injection and curing in carbon fibers-is prone to initial defects, such as pores, wrinkles, and delamination. This study suggests employing the pultrusion technique for spar production to consistently obtain a uniform cross-section and augment the reliability of both the manufacturing process and the design.

View Article and Find Full Text PDF

Operando Nanoscale Characterization Reveals Fe Doping of Ni Oxide Enhances Oxygen Evolution Reaction via Fragmentation and Formation of Dual Active Sites.

Angew Chem Int Ed Engl

January 2025

Max Planck-EPFL Laboratory for Molecular Nanoscience, Institut de Physique de la Matière Condensée, École Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland, 1005, Lausanne, SWITZERLAND.

Efficient catalytic water splitting demands advanced catalysts to improve the slow kinetics of the oxygen evolution reaction (OER). Earth-abundant transition metal oxides show promising OER activity in alkaline media. However, most experimental information available is either from post-mortem studies or in-situ space-averaged X-ray techniques in the micrometer range.

View Article and Find Full Text PDF

Combined anterior and posterior miniscrews increase apical root resorption of maxillary incisors in protrusion and premolar extraction cases.

Korean J Orthod

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Objective: Miniscrews are commonly utilized as temporary anchorage devices (TADs) in cases of maxillary protrusion and premolar extraction. This study aimed to investigate the effects and potential side effects of two conventional miniscrew configurations on the maxillary incisors.

Methods: Eighty-two adult patients with maxillary dentoalveolar protrusion who had undergone bilateral first premolar extraction were retrospectively divided into three groups: non-TAD, two posterior miniscrews only (P-TADs), and two anterior and two posterior miniscrews combined (AP-TADs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!