Reflectance confocal microscopy (RCM) presents a non-invasive method to image actinic keratosis (AK) at a cellular level. However, RCM criteria for AK response monitoring vary across studies and a universal, standardized approach is lacking. We aimed to identify reliable AK response criteria and to compare the clinical and RCM evaluation of responses across AK severity grades. Twenty patients were included and randomized to receive either cryotherapy ( = 10) or PDT ( = 10). Clinical assessment and RCM evaluation of 12 criteria were performed in AK lesions and photodamaged skin at baseline, 3 and 6 months. We identified the RCM criteria that reliably characterize AK at baseline and display significant reduction following treatment. Those with the highest baseline odds ratio (OR), good interobserver agreement, and most significant change over time were atypical honeycomb pattern (OR: 12.7, CI: 5.7-28.1), hyperkeratosis (OR: 13.6, CI: 5.3-34.9), stratum corneum disruption (OR: 7.8, CI: 3.5-17.3), and disarranged epidermal pattern (OR: 6.5, CI: 2.9-14.8). Clinical evaluation demonstrated a significant treatment response without relapse. However, in grade 2 AK, 10/12 RCM parameters increased from 3 to 6 months, which suggested early subclinical recurrence detection by RCM. Incorporating standardized RCM protocols for the assessment of AK may enable a more meaningful comparison across clinical trials, while allowing for the early detection of relapses and evaluation of biological responses to therapy over time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583298PMC
http://dx.doi.org/10.3390/cancers13215488DOI Listing

Publication Analysis

Top Keywords

reflectance confocal
8
confocal microscopy
8
response monitoring
8
rcm
8
rcm criteria
8
rcm evaluation
8
vivo reflectance
4
response
4
microscopy response
4
monitoring tool
4

Similar Publications

In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow.

View Article and Find Full Text PDF

A Novel Dual Cross-linking Reagent for Dentin Bonding Interface Stability.

J Dent Res

December 2024

State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.

The cross-linking reagent has been proposed as a means of modifying dentin collagen, inhibiting matrix metalloproteinase activities, and enhancing bond durability during dentin bonding procedures. This study aimed to synthesize an operation-friendly dual cross-linking reagent-3-(4-formyphenoxy)-2-hydroxypropyl methacrylate (FPA)-to assess its ability to cross-link dentin collagen and reduce enzymatic activity at the bonding interface. Cytotoxicity was evaluated by a cell counting kit-8 test and calcein AM/propidium iodide assay.

View Article and Find Full Text PDF

This guideline was developed in close collaboration with multidisciplinary experts from the European Association of Dermato-Oncology (EADO), the European Dermatology Forum (EDF) and the European Organization for Research and Treatment of Cancer (EORTC). Recommendations for the diagnosis and treatment of melanoma were developed on the basis of systematic literature research and consensus conferences. Cutaneous melanoma (CM) is the most dangerous form of skin tumor and accounts for 90 % of skin cancer mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!