Oncogenic -Induced Feedback Inflammatory Signaling in Pancreatic Cancer: An Overview and New Therapeutic Opportunities.

Cancers (Basel)

Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA.

Published: October 2021

Pancreatic ductal adenocarcinoma (PDAC) remains highly refractory to treatment. While the oncogene is present in almost all PDAC cases and accounts for many of the malignant feats of PDAC, targeting KRAS or its canonical, direct effector cascades remains unsuccessful in patients. The recalcitrant nature of PDAC is also heavily influenced by its highly fibro-inflammatory tumor microenvironment (TME), which comprises an acellular extracellular matrix and various types of non-neoplastic cells including fibroblasts, immune cells, and adipocytes, underscoring the critical need to delineate the bidirectional signaling interplay between PDAC cells and the TME in order to develop novel therapeutic strategies. The impact of tumor-cell KRAS signaling on various cell types in the TME has been well covered by several reviews. In this article, we critically reviewed evidence, including work from our group, on how the feedback inflammatory signals from the TME impact and synergize with oncogenic KRAS signaling in PDAC cells, ultimately augmenting their malignant behavior. We discussed past and ongoing clinical trials that target key inflammatory pathways in PDAC and highlight lessons to be learned from outcomes. Lastly, we provided our perspective on the future of developing therapeutic strategies for PDAC through understanding the breadth and complexity of KRAS and the inflammatory signaling network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582583PMC
http://dx.doi.org/10.3390/cancers13215481DOI Listing

Publication Analysis

Top Keywords

feedback inflammatory
8
inflammatory signaling
8
pdac
8
pdac cells
8
therapeutic strategies
8
kras signaling
8
signaling
5
oncogenic -induced
4
-induced feedback
4
inflammatory
4

Similar Publications

In Situ Proefferocytosis Microspheres as Macrophage Polarity Converters Accelerate Osteoarthritis Treatment.

Small

January 2025

Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, P. R. China.

Efferocytosis in macrophages typically engages an anti-inflammatory positive feedback regulatory mechanism. In osteoarthritis (OA), characterized by imbalanced inflammatory homeostasis, the proinflammatory state of macrophages in the immune microenvironment can be reversed through enhanced efferocytosis. This study develops an in situ proefferocytosis hydrogel microsphere (macrophage polarity converter, H-C@IL) for OA treatment.

View Article and Find Full Text PDF

Acute liver failure (ALF) is marked by a substantial generation of reactive oxygen species (ROS), which can induce both cellular senescence and a pronounced inflammatory response. Senescent cells secrete factors collectively termed the senescence-associated secretory phenotype (SASP), which exacerbate inflammation, while inflammation can reciprocally promote cellular senescence. Quercetin (Que), recognized for its ROS-scavenging capabilities, holds the potential for anti-inflammatory and anti-senescent effects.

View Article and Find Full Text PDF

Immunometabolism is critical in the regulation of immunity and inflammation; however, the mechanism of preventing aberrant activation-induced immunopathology remains largely unclear. Here, we report that glyoxalase II (GLO2) in the glycolysis branching pathway is specifically downregulated by NF-κB signaling during innate immune activation via tristetraprolin (TTP)-mediated mRNA decay. As a result, its substrate S-D-lactoylglutathione (SLG) accumulates in the cytosol and directly induces D-lactyllysine modification of proteins.

View Article and Find Full Text PDF

Proposing Bromo-epi-androsterone (BEA) for perioperative neurocognitive disorders with Interleukin-6 as a druggable target.

J Clin Anesth

January 2025

Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, United States of America. Electronic address:

Cognitive impairment following surgery is a significant complication, affecting multiple neurocognitive domains. The term "perioperative neurocognitive disorders" (PND) is recommended to encompass this entity. Individuals who develop PND are typically older and have increases in serum and brain pro-inflammatory cytokines notwithstanding the type of surgery undergone.

View Article and Find Full Text PDF
Article Synopsis
  • GBM IDH wild type (GBM IDH wt) is linked to bad outcomes and intense inflammatory processes that help tumors grow and attract immune cells, making them more aggressive.
  • Researchers utilized RNA-seq and bioinformatics tools to explore how inflammatory molecules, specifically S100A proteins, play a role in glioma, finding a notable increase in S100A expression in GBM IDH wt compared to IDH mutants.
  • The study identified specific functions of S100A9, A11, and A13 in different regions of the glioma microenvironment, suggesting potential therapeutic strategies, such as using the RAGE inhibitor Azeliragon, currently in clinical trials, to counteract these inflammatory effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!