Evidence regarding the effect of the onlay preparation design for different CAD/CAM restorative materials considering the preservation of cusps is lacking. Molars were 3D-modeled in four preparation designs for onlay restoration: traditional design with functional cusp coverage (TFC), non-retentive design with functional cusp coverage (NFC), traditional design with non-functional cusp coverage (TNFC) and non-retentive design with non-functional cusp coverage (NNFC). The restorations were simulated with two CAD/CAM restorative materials: LD-lithium disilicate (IPS e.max CAD) and RC-resin composite (GrandioBloc). A 100 N axial load was applied to the occlusal surface, simulating the centric contact point. Von Mises (VM) and maximum principal (Pmax) stress were evaluated for restorations, cement layer and dental substrate. The non-retentive preparation design reduced the stress concentration in the tooth structure in comparison to the conventional retentive design. For LD onlays, the stress distribution on the restoration intaglio surface showed that the preparation design, as well as the prepared cusp, influenced the stress magnitude. The non-retentive preparation design provided better load distribution in both restorative materials and more advantageous for molar structure. The resin composite restoration on thenon-functional cusp is recommended when the functional cusp is preserved in order to associate conservative dentistry and low-stress magnitude.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8587095PMC
http://dx.doi.org/10.3390/polym13213831DOI Listing

Publication Analysis

Top Keywords

preparation design
16
cusp coverage
16
restorative materials
12
functional cusp
12
design
9
cad/cam restorative
8
traditional design
8
design functional
8
non-retentive design
8
design non-functional
8

Similar Publications

Glioblastoma presents a significant treatment challenge due to the blood-brain barrier (BBB) hindering drug delivery, and the overexpression of matrix metalloproteinases (MMPs), which promotes tumor invasiveness. This study introduces a novel nanostructured lipid carrier (NLC) system designed for the delivery of batimastat, an MMP inhibitor, across the BBB and into the glioblastoma microenvironment. The NLCs were functionalized with epidermal growth factor (EGF) and a transferrin receptor-targeting construct to enhance BBB penetration and entrapment within the tumor microenvironment.

View Article and Find Full Text PDF

Pyruvate Kinase-Based Novel 2-Thiazol-2-yl-1,3,4-oxadiazoles Discovery as Fungicidal Highly Active Leads.

J Agric Food Chem

January 2025

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.

To discover novel inhibitors of pyruvate kinase (PK) as fungicidal candidates, a series of 2-thiazol-2-yl-1,3,4-oxadiazole derivatives were designed by a prediction model with PK (RsPK) as a protein target and as a ligand. Fungicidal screening indicated that , , , , , , , and exhibited equal or higher activity compared to against , , or . To our surprise, showed comparable activity to flutriafol with an EC of 0.

View Article and Find Full Text PDF

Effect of post-processing on the surface, optical, mechanical, and dimensional properties of 3D-printed orthodontic clear retainers.

Clin Oral Investig

January 2025

School of Materials Science and Innovation, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Phuttamonthon District, Nakhon Pathom, 73170, Thailand.

Objectives: To address the high surface roughness and poor optical properties of three-dimensional (3D) printed orthodontic clear retainers, an alternative post-processing protocol was investigated with the goal of achieving improved surface, optical, and mechanical properties while preserving dimensional accuracy.

Materials And Methods: Samples were prepared from two biocompatible methacrylate-based 3D-printing resins (Formlabs Dental LT Clear V2, NextDent OrthoFlex) and one thermoplastic material (Duran). For the 3D-printed resins, one group was post-processed by rinsing in isopropyl alcohol, while another group was centrifuged before post-curing in glycerine.

View Article and Find Full Text PDF

Intracellular delivery of proteins has attracted significant interest in biological research and cancer treatment, yet it continues to face challenges due to the lack of effective delivery approaches. Herein, we developed an efficient strategy cationic α-helical polypeptide-mediated anionic proprotein delivery. The protein was reversibly modified with adenosine triphosphate dynamic covalent chemistry to prepare an anionic proprotein (A-protein) with abundant phosphate groups.

View Article and Find Full Text PDF

Bottom-up reconstitution design of a biomimetic atelocollagen microfibril for enhancing hemostatic, antibacterial, and biodegradable benefits.

J Mater Chem B

January 2025

Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, P. R. China.

Powdered collagen is emerging as a promising topical hemostat owing to its adaptability to various wounds, active hemostatic abilities, and biosafety. The reproduction of a bionic structure similar to natural collagen is crucial for effective hemostasis and bioactivity. Additional factors relevant to clinical application include antimicrobial properties, minimal immune response, and straightforward preparation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!