Stress-Strain Behaviour of Reparable Composite Panel with Step-Variable Thickness.

Polymers (Basel)

Institute of Automotive Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic.

Published: November 2021

There is an urgent problem of finding an economically viable method of maintenance and restoration of the bearing capacity of structures of various applications. Repair of structures with patches made of polymeric composite materials is one of the most promising repair technologies. However, an improper choice of parameters of the composite patch leads to unjustified increase in the structure mass and the cost of its further operation. These situations result from the lack of reliable methods for developing the repair process, which take into account the influence of the patch geometry and conditions for performance of repair works on the bearing capacity of the repaired structure. The mathematical model of the reparable composite shell-type panel taking into account inhomogeneity of transverse shear deformations at stepped variation of its thickness has been developed. In contrast to the classical theory of layered shells, the model allows simplifying a three-dimensional problem by setting of the displacement field on the layers' interfaces and their linear interpolation over thickness of the panel, as well as considering the transverse shear deformations resulting from the strength, temperature, or shrinkage loading. According to results, the maximum rise in stresses in the case of a notched panel occurs in the weakened layer, and it is from this layer the failure of the structure will start. In the event of the patch, the panel surface opposite the reinforcement is the most loaded (i.e., susceptible to failure) surface. To confirm the reliability of the developed model, we compared the analytical calculations with the results of experimental and numerical studies of the deformed state of a panel of step-variable thickness by the method of holographic interferometry and modelling by the finite element method. Displacement fields available from experiments correspond to the predicted theoretical results. The resulting maximum error does not exceed 7%. The data obtained during numerical modelling allowed us to conclude that the accuracy of theoretical calculations is sufficient for engineering practice. Results of the work can be used to solve the practical problems such as determination of stress-strain behaviour of a damaged structure or structure after repair, specification of the permissible delamination dimensions, and defining of parameters of the bonded repair process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588215PMC
http://dx.doi.org/10.3390/polym13213830DOI Listing

Publication Analysis

Top Keywords

stress-strain behaviour
8
reparable composite
8
panel step-variable
8
step-variable thickness
8
bearing capacity
8
repair process
8
transverse shear
8
shear deformations
8
panel
6
repair
6

Similar Publications

Comprehensive collection of uniaxial stress-strain data for rubberized concrete.

Data Brief

February 2025

Civil Engineering Department, College of Engineering, King Saud University, P. O. Box 800, Riyadh 11421, Saudi Arabia.

This dataset article encompasses a thorough compilation of 80 uniaxial stress-strain datasets obtained from cylindrical rubberized concrete specimens subjected to compression testing. Data collection was meticulously conducted through a systematic review and extraction of stress-strain datasets from 68 rubberized concrete mixtures sourced from diverse literature references, incorporating rubber of different origins, sizes, volumes and characteristics. Additionally, stress-strain data for 48 cylindrical specimens, representing 12 different mixes with various rubber sizes and contents, were obtained from laboratory experiments performed by the author.

View Article and Find Full Text PDF

Study on dynamic compression characteristics of coal containing gas under different strain rates.

Sci Rep

January 2025

State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, Anhui, China.

Article Synopsis
  • A new dynamic and static combined loading test system was developed to study how gas-containing coal behaves under different geological conditions, focusing on triaxial dynamic compression tests.
  • The effects of strain rate and gas pressure were significant, with lower gas pressures extending the plastic deformation stage at high strain rates, while higher pressures increased brittleness.
  • The research revealed that the damage in gas-containing coal primarily occurs through tensile-shear mechanisms, and higher strain rates and gas pressures influence peak stress and strain, aiding in understanding and managing related hazards.
View Article and Find Full Text PDF

Exploring the Electronic and Mechanical Properties of TPDH Nanotube: Insights from Ab Initio and Classical Molecular Dynamics Simulations.

ACS Omega

December 2024

Electronic Structure and Atomistic Dynamics Interdisciplinary Group (GEEDAI), Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Avenida dos Estados 5001, 09210-580 Santo Andre, Sao Paulo, Brazil.

Tetra-Penta-Deca-Hexa graphene (TPDH) is a new two-dimensional (2D) carbon allotrope with attractive electronic and mechanical properties. It is composed of tetragonal, pentagonal, decagonal and hexagonal carbon rings. When TPDH graphene is sliced into quasi-one-dimensional (1D) structures such as nanoribbons, it exhibits a range of behaviors, from semimetallic to semiconducting.

View Article and Find Full Text PDF

Scaffolds' designs and physical properties have an important place in tissue engineering. Using different biomaterials, scaffolds with other structures can be developed. The thermal and mechanical properties of biomaterials used in producing scaffolds with the fused deposition modeling method are significant for the application's success.

View Article and Find Full Text PDF

An improved method tailored for anisotropic soft soils is presented, integrating theoretical models and field data to calculate the grouting quantity required for tunnel foundations. Given the complexities of soil interactions, particularly under variable geological conditions, this approach incorporates nonlinear behaviors and empirical field data to improve accuracy. Our findings reveal that integrating these theoretical frameworks significantly enhances the understanding of stress-strain behavior during grouting, enabling precise calculations of both axial and vertical expansion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!